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Abstract

In this chapter the notion of many-sheeted space-time is discussed.
Topological condensation and evaporation represent the basic new con-
cepts of TGD and an attempt to formulate a general qualitative theory
of the topological condensation and evaporation and TGD based space-
time concept is made.

The notion of many-sheeted space-time used is roughly that as it
was around 1990. The fusion of real and various p-adic physics to
single coherent whole by generalizing the notion of number, the gener-
alization of the notion of the imbedding space to allow a mathematical
representation of dark matter hierarchy based on dynamical and quan-
tized Planck constant, parton level formulation of TGD using light-like
3-surfaces as basic dynamical objects, and so called zero energy ontol-
ogy force to generalizes considerably the view about space-time. These
developments are discussed in the next chapter.

The topics to be discussed in the sequel will be following.

1. The general structure of topological condensate

The question what 3-space looks like in various scales and end up
to a purely topological description for the generation of structures.
Topological arguments imply a finite size for non-vacuum 3-surfaces
and the conservation of the gauge and gravitational fluxes requires
that 3-surface feeds these fluxes to a larger 3-surface via # contacts
situated near the boundaries of the 3-surface. Renormalization group
invariance (RGI) hypothesis suggests that 3-surfaces with all sizes are
important in the functional integral and this leads to the idea of the
many-sheeted space-time with hierarchical, fractal like structure such
that each level of the hierarchy corresponds to a characteristic length
scale.

2. Topological field quantization

The general space-time picture suggested by RGI hypothesis can
be justified mathematically. Due to the compactness of CP2, a gen-
eral space-time surface representable as a map M4 → CP2 decomposes
into regions, ”topological field quanta”, characterized by certain vac-
uum quantum numbers and 3-surface is in general unstable against the
decay to disjoint components along the boundaries of the field quanta.

Topological field quanta have finite size depending on the values
of the vacuum quantum numbers: the size increases as the values of
the vacuum quantum numbers increase. Topological field quantum is
therefore a good candidate for a quantum coherent system provided
some Bose Einstein condensate or quantum coherent state is available.
The BE condensate or coherent state of the light # contacts near the
boundaries of the topological field quantum is a good candidate in this
respect. It came as a total surprise that this the generation of vacuum
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expectation value of Higgs field corresponds to the generation of this
kind of macroscopic quantum phase.

The requirement of the gauge charge conservation in turn implies
the hierarchical structure of the topological condensate: gauge fluxes
must go somewhere from the outer boundaries of the topological field
quantum with finite size and this ’somewhere’ must be a larger topo-
logical field quantum, which in turn feeds its gauge fluxes to a larger
topological field quantum,.... Of course, the nonlinearity of the theory
could allow vacuum charge densities which can cancel the net charge
near boundaries.

Most importantly, topological field quanta allow discrete scalings
as a dynamical symmetry. p-Adic length scale hypothesis states that
the allowed scaling factors correspond to powers of

√
p, where the

prime p satisfies p ' 2k, k integer with prime values favored. p-Adic
fractality (actually multi-p-fractality) can be justified more rigorously
by a precise formulation for the fusion of real and various p-adic physics
based on the generalization of the notion of number.

3. General physical consequences of new view about space-time

The physical consequences of the new space-time picture are non-
trivial at all length scales.

a) A natural interpretation for the hierarchical structure is in terms
of bound state formation. Quarks condense to form hadrons, nucleons
condense to form atomic nuclei, nuclei and electrons condense to form
atoms, how atoms condense to form molecules, and so on. One ends
up with a general picture for the topology of 3-space associated with,
say, solid state and with the idea that even the macroscopic bodies of
the everyday world correspond to topologically condensed 3-surfaces.

b) The join of 3-surfaces along their boundaries defines a new kind
of interaction, which has in fact has been used in phenomenological
modelling of chemical reactions. Usually chemical bond is believed
to result from Schrödinger equation. At the macroscopic level this
interaction is rather familiar to us since it means that two macroscopic
bodies just touch each other.

c) In TGD context there are purely topological necessary condi-
tions for quantum coherence and a topological description for dissipa-
tive phenomena. The formation of the join along boundaries bonds
plays a decisive role in the description and this process provides a
universal manner to generate macroscopic quantum systems. There
is also a topological description for the formation of the supra phases
and the phase of the order parameter of the supra phase ground state
contains information about the homotopy of the join along boundaries
condensate.

4. Gauge bosons and Higgs boson as wormhole contacts, electro-
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weak symmetry breaking, the weakening of Equivalence Principle, and
color confinement

The proper understanding of the concepts of gauge charges and
fluxes and their gravitational counterparts in TGD space-time has
taken a lot of efforts. At the fundamental level gauge charges assignable
to light-like 3-D elementary particle horizons surrounding a topologi-
cally condensed CP2 type extremals can be identified as the quantum
numbers assignable to fermionic oscillator operators generating the
state associated with horizon identifiable as a parton. Quantum clas-
sical correspondence requires that commuting classical gauge charges
are quantized and this is expected to be true by the generalized Bohr
orbit property of the space-time surface.

There are however non-trivial questions. Do vacuum charge den-
sities give rise to renormalization effects or imply non-conservation so
that weak charges would be screened above intermediate boson length
scale? Could one assign the non-conservation of gauge fluxes to the
wormhole (#) contacts, which are identifiable as pieces of CP2 ex-
tremals and for which electro-weak gauge currents are not conserved
so that weak gauge fluxes would be non-vanishing but more or less
random so that long range correlations would be lost?

It indeed turns that one can understand the non-conservation of
weak gauge fluxes in terms of wormhole contacts carrying pairs of
right/left handed fermion and left/right handed antifermion having
interpretation as Higgs bosons. The average non-conserved light-like
gravitational four-momentum of wormhole contact representing Higgs
boson can be identified as the inertial four-momentum apart from the
sign factor so that one can also understand particle massivation at fun-
damental level and a connection with p-adic thermodynamics based
description of Higgs mechanism emerges. Also a detailed understand-
ing about how Equivalence Principle is weakened in TGD framework
emerges.

Later it became clear that all gauge bosons must be identified as
wormhole contacts whereas elementary fermions correspond to worm-
hole throats assocaited with topologically condensed CP2 type vacuum
extremals.

Also color confinement can be understood using only quantum clas-
sical correspondence and general properties of classical color gauge
field. Spin glass degeneracy allows to understand the generation of
macro-temporal quantum coherence and the same mechanism allows
also to understand more quantitatively color confinement by applying
unitarity conditions.

5. Wormhole contacts, super-conductivity, and biology

Wormhole contacts, feeding gauge fluxes from a given sheet of the
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3-space to a larger one, which are a necessary concomitant of the many-
sheeted space-time concept. # contacts can be regarded as particles
carrying classical charges defined by the gauge fluxes but behaving as
extremely tiny dipoles quantum mechanically in the case that gauge
charge is conserved. # contacts must be light, which suggests that
they can form Bose-Einstein condensates and coherent states. The
real surprise (after 27 years of TGD) was that the formation of these
rather exotic macroscopic quantum phases could be identified as for-
mation of vacuum expectation value of Higgs field for various scaled
up copies of standard model physics. This kind of macroscopic quan-
tum phases could be in a central role in the TGD inspired model for
a bio-system as a macroscopic quantum system. Electromagnetically
charged # contacts are also possible and would explain the massiva-
tion of photons in super-conductors implying that long ranged exotic
W boson exchanges play a key role in super-conductivity.

6. The interpretation of long range weak and color gauge fields

In TGD gravitational fields are accompanied by long ranged electro-
weak and color gauge fields. The only possible interpretation is that
there exists a p-adic hierarchy of color and electro-weak physics such
that weak bosons are massless below the p-adic length scale determin-
ing the mass scale of weak bosons. By quantum classical correspon-
dence classical long ranged gauge fields serve as space-time correlates
for gauge bosons below the p-adic length scale in question.

The unavoidable long ranged electro-weak and color gauge fields
are created by dark matter and dark particles can screen dark nuclear
electro-weak charges below the weak scale. Above this scale vacuum
screening occurs as for ordinary weak interactions. Dark gauge bosons
are massless below the appropriate p-adic length scale but massive
above it and U(2)ew is broken only in the fermionic sector. For dark
copies of ordinary fermions masses are essentially identical with those
of ordinary fermions.

This interpretation is consistent with the standard elementary par-
ticle physics for visible matter apart from predictions such as the pos-
sibility of p-adically scaled up versions of ordinary quarks predicted
to appear already in ordinary low energy hadron physics. The most
interesting implications are seen in longer length scales. Dark variants
of ordinary valence quarks and gluons and a scaled up copy of ordinary
quarks and gluons are predicted to emerge already in ordinary nuclear
physics. Chiral selection in living matter suggests that dark matter is
an essential component of living systems so that non-broken U(2)ew

symmetry and and free color in bio length scales become characteris-
tics of living matter and of bio-chemistry and bio-nuclear physics. An
attractive solution of the matter antimatter asymmetry is based on the
identification of also antimatter as dark matter.
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7. Renormalization group equations at space-time level

Renormalization group evolution equations for gauge couplings at
given space-time sheet are discussed using quantum classical corre-
spondence. For known extremals of Kähler action gauge couplings are
RG invariants inside single space-time sheet, which supports the view
that discrete p-adic coupling constant evolution replaces the ordinary
coupling constant evolution.

1 Introduction

The concept of topological condensation unifies two disparate approaches to
TGD, namely TGD as a Poincare invariant theory of gravitation and TGD
as a generalization of the string model. The idea is that classical 3- space
with matter can be regarded as a 3-surface obtained by ”gluing” particle
like 3-surfaces to the background 3-surface with possibly macroscopic size:
resulting topological in-homogenities correspond to matter. The ”gluing” of
two n-manifolds together by topological sum means the following operation:
drill spherical holes to both n-manifolds and connect the resulting boundary
components Sn−1 with a tube D1 × Sn−1 (see Fig. 1.1). Of course, several
# contacts, which are tiny ’wormholes’ connecting two parallel space-time
sheets, are expected to be present in the general case.

1.1 Various types of topological condensation

One can in fact distinguish between three kinds of topological condensation.

1. 3-dimensional topological condensation, which is expected to give rise
to the formation of bound states (not necessary all possible bound
states).

2. 4-dimensional topological condensation, which results from the prop-
erties of the Kähler action: the minimizing four surface associated
with a given set of 3-surfaces is in general connected so that long
range interactions are generated between the 3-surfaces. This mech-
anism is in principle all what is needed to generate the so called
classical space-time. Although the physical state can consist of arbi-
trarily many disjoint 3-surfaces, the space-time associated with these
surfaces is connected and resembles the ”classical” space-time, when
topological inhomogenities are smoothed out. It should be noticed
that 4-dimensional topological condensation corresponds to unstable 3-
dimensional topological condensation. For the visualization purposes,
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one can consider a simplified example: instead of 3-surfaces consider
strings so that space-time is replaced with a two-surface having strings
as its boundaries.

3. 2-dimensional topological condensation: boundaries of the 3- surfaces
are joined together by a tube D1 ×D2. This process will be referred
as a formation of join along boundaries bonds.

Figure 1: Topological sum of two manifolds

There are also reasons to suspect that the actual macroscopic 3-space
is not connected but corresponds to a large macroscopic 3-surface, classical
3-space, plus a gas of small particle like 3-surfaces, ”Baby Universes”. It
is to be expected that the effects related to the vapor phase particles are
very small. An idealization is obviously needed in order to obtain some-
thing resembling the topologically trivial 3-space of the standard theories:
topological inhomogenities of size smaller than a given length scale L are
smoothed out and their presence is described using various currents, such as
energy momentum tensor, gauge currents and particle number currents. To
be precise, this works only provided one takes the limit L →∞ since TGD
space-time could well be many sheeted in arbitrarily long length scales.

1.2 Implications of the topological non-triviality of macro-
scopic space-time

If one accepts that 3-space is topologically nontrivial, one must sooner or
later end up asking following questions. What does 3-space actually look
like in various scales? What are the general physical consequences of the
new space time concept? Are they seen at elementary particle level only
or perhaps at atomic, molecular, etc. levels? What is the 3-topology of
the solid/liquid/gas state? What about macroscopic bodies: what do they
correspond topologically?
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In the following the general ideas about the topological condensation are
discussed. These ideas have developed gradually in parallel with the devel-
opment of the configuration space geometry and Quantum TGD, through
the study of the extremals of Kähler action and through the attempts to
apply TGD inspired ideas to many not so well understood phenomena like
Higgs mechanism or more generally, particle massivation, color confinement,
super fluidity, super conductivity, hydrodynamic turbulence, etc.. The ideas
to be represented may look rather wild, when encountered outside the con-
text defined by twenty years of personal work with many trials and errors
and moments of discovery. It is the internal consistency rather than quanti-
tative details, as well as the radically new approach provided to the problems
of even macroscopic physics, which makes the scenario so exciting.

1.3 Topics of the chapter

The topics to be discussed in the sequel will be following:

1. The question what 3-space looks like in various scales and end up
to a purely topological description for the generation of structures.
Topological arguments imply a finite size for non-vacuum 3-surfaces
and the conservation of the gauge and gravitational fluxes requires
that 3-surface feeds these fluxes to a larger 3-surface via # contacts
situated near the boundaries of the 3-surface. Renormalization group
invariance (RGI) hypothesis suggests that 3-surfaces with all sizes are
important in the functional integral and this leads to the idea of the
many-sheeted space-time with hierarchical, fractal like structure such
that each level of the hierarchy corresponds to a characteristic length
scale.

2. The general space-time picture suggested by RGI hypothesis can be
justified mathematically. Due to the compactness of CP2, a general
space-time surface representable as a map M4 → CP2 decomposes
into regions, ”topological field quanta”, characterized by certain vac-
uum quantum numbers and 3-surface is in general unstable against
the decay to disjoint components along the boundaries of the field
quanta. Topological field quanta have finite size depending on the val-
ues of the vacuum quantum numbers: the size increases as the values
of the vacuum quantum numbers increase. Topological field quantum
is therefore a good candidate for a quantum coherent system provided
some Bose Einstein condensate or quantum coherent state is available.
The BE condensate or coherent state of the light # contacts near the
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boundaries of the topological field quantum is a good candidate in this
respect. It came as a total surprise that this the generation of vacuum
expectation value of Higgs field corresponds to the generation of this
kind of macroscopic quantum phase.

The requirement of the gauge charge conservation in turn implies the
hierarchical structure of the topological condensate: gauge fluxes must
go somewhere from the outer boundaries of the topological field quan-
tum with finite size and this ’somewhere’ must be a larger topological
field quantum, which in turn feeds its gauge fluxes to a larger topolog-
ical field quantum,.... Of course, the nonlinearity of the theory could
allow vacuum charge densities which can cancel the net charge near
boundaries.

Most importantly, topological field quanta allow discrete scalings as
a dynamical symmetry. p-Adic length scale hypothesis states that
the allowed scaling factors correspond to powers of

√
p, where the

prime p satisfies p ' 2k, k integer with prime values favored. p-Adic
fractality (actually multi-p-fractality) can be justified more rigorously
by a precise formulation for the fusion of real and various p-adic physics
based on the generalization of the notion of number [E1].

3. The physical consequences of the new space-time picture are nontrivial
at all length scales.

i) A natural interpretation for the hierarchical structure is in terms of
bound state formation. Quarks condense to form hadrons, nucleons
condense to form atomic nuclei, nuclei and electrons condense to form
atoms, how atoms condense to form molecules, and so on. One ends
up with a general picture for the topology of 3-space associated with,
say, solid state and with the idea that even the macroscopic bodies of
the everyday world correspond to topologically condensed 3-surfaces.

ii) The join of 3-surfaces along their boundaries defines a new kind of
interaction, which in fact has been used in phenomenological modelling
of and usually believed to result from Schrödinger equation. At the
macroscopic level this interaction is rather familiar to us since it means
that two macroscopic bodies just touch each other!

iii) The possibility to understand general qualitative features of the
charge renormalization topologically in the proposed scenario for space-
time, is considered. This rough vision represents one of the oldest
strata in the evolution of TGD: in [C3] the recent view about space-
time correlates of gauge charges is developed.
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iv) In TGD context there are purely topological necessary conditions
for quantum coherence and a topological description for dissipative
phenomena. The formation of the join along boundaries bonds plays
a decisive role in the description and this process provides a universal
manner to generate macroscopic quantum systems.

v) There is also a topological description for the formation of the
supra phases and the phase of the order parameter of the supra phase
ground state contains information about the homotopy of the join
along boundaries condensate.

4. The proper understanding of the concepts of gauge charges and fluxes
and their gravitational counterparts in TGD space-time has taken a
lot of efforts. At the fundamental level gauge charges assignable to
light-like 3-D elementary particle horizons surrounding a topologically
condensed CP2 type extremals can be identified as the quantum num-
bers assignable to fermionic oscillator operators generating the state
associated with horizon identifiable as a parton. Quantum classical
correspondence requires that commuting classical gauge charges are
quantized and this is expected to be true by the generalized Bohr
orbit property of the space-time surface.

There are however non-trivial questions. Do vacuum charge densi-
ties give rise to renormalization effects or imply non-conservation so
that weak charges would be screened above intermediate boson length
scale? Could one assign the non-conservation of gauge fluxes to the
wormhole (#) contacts, which are identifiable as pieces of CP2 ex-
tremals and for which electro-weak gauge currents are not conserved
so that weak gauge fluxes would be non-vanishing but more or less
random so that long range correlations would be lost?

It indeed turns that one can understand the non-conservation of weak
gauge fluxes in terms of wormhole contacts carrying pairs of right/left
handed fermion and left/right handed antifermion having interpreta-
tion as Higgs bosons. The average non-conserved light-like gravita-
tional four-momentum of wormhole contact representing Higgs boson
can be identified as the inertial four-momentum apart from the sign
factor so that one can also understand particle massivation at fun-
damental level and a connection with p-adic thermodynamics based
description of Higgs mechanism emerges. Also a detailed understand-
ing about how Equivalence Principle is weakened in TGD framework
emerges.
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5. The most dramatic prediction obvious from the beginning but mis-
interpreted for about 26 years is the presence of long ranged classical
electro-weak and color gauge fields in the length scale of the space-
time sheet. The only interpretation consistent with quantum classical
correspondence is in terms of a hierarchy of scaled up copies of stan-
dard model physics corresponding to p-adic length scale hierarchy and
dark matter hierarchy labelled by arbitrarily large values of dynamical
quantized Planck constant. Chirality selection in the bio-systems pro-
vides direct experimental evidences for this fractal hierarchy of stan-
dard model physics.

6. # contacts, feeding gauge fluxes from a given sheet of the 3-space to
a larger one, which are a necessary concomitant of the many-sheeted
space-time concept. # contacts can be regarded as particles carrying
classical charges defined by the gauge fluxes but behaving as extremely
tiny dipoles quantum mechanically in the case that gauge charge is
conserved. # contacts must be light, which suggests that they can
form Bose-Einstein condensates and coherent states. The real surprise
(after 27 years of TGD) was that the formation of these rather exotic
macroscopic quantum phases could be identified as formation of vac-
uum expectation value of Higgs field for various scaled up copies of
standard model physics!

This kind of macroscopic quantum phases could be in a central role in
the TGD inspired model for a bio-system as a macroscopic quantum
system. A related effect is the formation of exotic atoms, when some
valence (say) electrons drop from the atomic space-time sheet to a
larger space-time sheet. This process is accompanied by the generation
of a # contacts. The process leads to the effective lowering of the
valence of the original atom and thus to electronic alchemy! Under
certain circumstances, the electrons on the nearly empty non-atomic
space-time sheets could form a high temperature super conductor.

It took still some time to realize that all gauge bosons could be re-
garded as wormhole contacts and that fermions correspond naturally
to wormhole throats of topologically condensed CP2 type extremals.
This picture follows unavoidably from the assumption that fermions
are free at partonic level and leads to a detailed understanding of par-
ticle massivation at the level of first principles.

I have not discussed in this chapter the recent developments in quantum
TGD except by references to the next chapter, where these developments
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are summarized.

2 What does 3-surface look like?

In the following a general picture of 3-space will be deduced from RGI hy-
pothesis and spin glass analogy, the selection of preferred extremals of the
Kähler action as generalized Bohr orbits, and from the special properties of
the induced gauge fields implied by the compactness of CP2.

2.1 Renormalization group invariance, quantum criticality
and topology of 3-space

Renormalization group invariance, quantum criticality, and spin glass anal-
ogy are basic notions of quantum TGD but it is far from clear what these
notions really mean at the level of space-time physics.

2.1.1 What quantum criticality means?

RGI (Renormalization group invariance) hypothesis states essentially that
TGD Universe is quantum critical meaning that quantum theory is math-
ematically equivalent with a statistical system at critical point. S-matrix
elements are analogous to thermal averages of observables, αK corresponds
to critical temperature and the vacuum functional exp(K) corresponds to
exp(−H/T ). The physical interpretation of the Kähler function suggests
that αK(phys) might correspond to a critical temperature at which sponta-
neous Kähler magnetization and formation Kähler electric fields compete.

The analogy with spin glass phase in four-dimensional sense is an ad-
ditional characteristics feature. This allows the critical value of the αK to
depend on the zero modes of the configuration space metric.

The naive idealized interpretation for the quantum criticality would be
that 3-surfaces with all possible sizes contribute to the functional integral.
In realistic situations there is some upper bound for the size and duration
quantum fluctuations and the size of the largest space-time sheet involved
would define the scales in question.

Spin glass analogy leads to the idea that configuration space decomposes
into regions Dp characterized by the p-adic prime p such that one can asso-
ciate a hierarchy of p-adic length scales Lp(n) =

√
pn−1l , l ∼ 104

√
G to each

value of p [E5]. The critical value of αK would depend on p. The depen-
dence can be deduced from the requirement that gravitational constant is
approximately invariant in the coupling constant evolution associated with
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the p-adic prime p . These scales define natural upper bounds for the scale of
quantum fluctuations associated with the quantum critical space-time sheet.
Dark matter hierarchy in turn assigns to each p-adic length scale a hierarchy
of further length scales scaled up by the values of h̄/h̄0. The typical duration
of quantum fluctuation would correspond to the typical geometric duration
of maximal deterministic region inside space-time sheet.

2.1.2 What are the competing phases?

Quite generally, critical systems are characterized by long range correla-
tions (correlation length ξ diverges) for the competing phases present in the
system. Physically this means the coexistence of arbitrarily large volumes
of the two phases. Both Kähler magnetized 3-surfaces and 3-surfaces con-
taining predominantly Kähler electric fields contribute significantly to the
functional integral are present. At the infinite volume limit the Kähler ac-
tion per volume must vanish since otherwise the vacuum functional vanishes:
TGD cosmology to be studied later is in accordance with this picture.

If preferred extremals minimize (or maximize) the absolute value of
Kähler action in each region with a definite sign of action density, the de-
composition into magnetic and electric regions and vanishing of the Kähler
action per volume follows automatically [E2]. For the absolute minimization
of Kähler action Kähler electric fields dominate and it is not clear whether
there are solutions for which the Kähler action of the entire Universe is finite.

2.1.3 How quantum fluctuations and thermal fluctuations relate
to each other?

An experimental fact is that quantum critical systems such as high tem-
perature superconductors [J1, J2, J3] exist in a rather narrow parameter
range, and one can say that quantum criticality becomes visible only when
quantum fluctuations are not masked by thermal fluctuations. One should
express this fact using TGD based notions.

p-Adic and dark matter hierarchies correspond also to hierarchies for
quantum jumps with time scales given the average geometric duration for
quantum jump. This hierarchy means quantum parallel dissipation about
which hadrons as quantum systems containing quarks as dissipating subsys-
tem at shorter p-adic length and time scale give a basic example.

At given space-time sheet short scale thermal fluctuations would have
interpretation as quantum parallel fluctuations at smaller space-time sheets
topologically condensed to the space-time sheet in question whereas the
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quantum critical fluctuations would correspond to the quantum fluctuations
in the scale of the space-time sheet. The duration of maximal deterministic
space-time region would correspond to the duration of single quantum state
in the sequence of quantum jumps. The interpretation would be that only
at quantum criticality the quantal fluctuations in long time scales can mask
the thermal fluctuations in shorter scales.

2.1.4 How quantum measurement theory relates to quantum crit-
icality?

A further question is how quantum measurement theory relates to this pic-
ture. Configuration space zero modes represent non-quantum fluctuating
classical observables correlating with quantum numbers and in quantum
measurement a localization in zero modes occurs. Does this mean that the
localization in zero modes breaks quantum criticality above the time scale
corresponding to the typical geometric time duration of quantum jump by
selecting precise values of zero modes?

2.1.5 Formation of join along boundaries condensates and visible-
to-dark phase transitions as mechanisms giving rise to quan-
tum critical systems

The phase transition from visible to dark matter, and more generally, the
transitions increasing the value of Planck constant define the first mechanism
leading to the formation of larger quantum critical system and long range
quantum fluctuations can be assigned to dark matter.

The formation of a join along boundaries condensate means also a forma-
tion of a quantum critical system. The 3-surfaces with a typical size of order
Lp combine together by join along boundaries bonds to form larger surfaces.
Above criticality there are no bonds, below criticality all 3-surfaces combine
to form larger condensates and at criticality there are join along bound-
aries condensates with all possible sizes up to the cutoff length scale. Note
that, at least for small values of p, the surfaces with typical sizes

√
pnLp,

n = ..0, 1, 2, ... correspond to the presence of all surface sizes related by a
fractal scaling for a given p. A more precise formulation for what the fusion
of p-adic and real physics [E2] means supports the view that topological field
quanta allow a discrete scaling symmetry identifiable as scalings by powers
of
√

p.
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Figure 2: Hierarchical, fractal like structure of topological condensate pre-
dicted by RGI hypothesis: 2-dim. visualization

2.2 3-surfaces have outer boundaries

In length scales larger than hadronic length scale 3-surface with size L means
roughly a condensate of smaller scale 3-surfaces on a piece of Minkowski
space of size L. It is quite essential that these surfaces have finite size and
therefore have outer boundary. The finite size of the 3-surfaces follows from
the minimization of the Kähler action and from the compactness of CP2.
The argument goes as follows.

The matter inside a 3-surface creates gauge fields. In particular, the
minimization of the absolute value of Kähler action in a region with defi-
nite sign of action density implies that matter serves as a source of either
Kähler magnetic or Kähler electric fields. For instance, the Kähler electric
field created by a constant mass distribution increases without bound. The
smooth imbeddings of the gauge fields are however not possible globally and
space-time decomposes into topological field quanta and their boundaries
correspond to edges of space time. The elimination of the edges leads to a
3-space consisting of disjoint components. Simple examples are provided by
a cylindrically symmetric imbedding of a constant magnetic field and the
Kähler electric field created by a constant mass distribution, which fail for
certain critical radii.

One can understand at general level how the compactness of CP2 enters
into the game. The point is that the gauge potentials associated with the in-
duced gauge fields are bounded functions of CP2 coordinates. For instance,
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for a geodesic sphere S2 of CP2 gauge potentials are just proportional to
A = sin(Θ)dΦ. For a generic gauge field the gauge potential is not bounded
(as an example consider gauge potentials of the Coulomb field or Kähler elec-
tric field created by a constant charge distribution or by a constant magnetic
field). Therefore for certain values of CP2 coordinates the representation of
the gauge potential as an induced gauge potential fails. The failure takes
place at some 3-surface of X4. One can continue the embedding by chang-
ing the values of vacuum quantum numbers but certain CP2 coordinates
possess discontinuous or even infinite derivatives on the boundary so that
undesirable edges of space time result. The manner to get rid of edges is to
allow boundary for X3 so that a region, where the the representation of the
gauge potential as induced gauge potential works defines a natural unit of
space-time, which might be called topological field quantum. In the sequel
this phenomenon will be considered in more detail.

An obvious question is what happens to the gauge fluxes of long range
gauge fields near the boundaries of the topological field quantum. Same
question applies also to the gravitational flux associated with the Newtonian
potential at the non-relativistic limit. One possibility is the appearance of
neutralizing vacuum gauge charges and negative gravitational masses near
the boundaries of the field quantum, perhaps related to vacuum polarization:
this alternative must be realized for the particles of vapor phase. Second
possibility is topological condensation on a larger topological field quantum
so that gauge and gravitational fluxes flow to the larger topological field
quantum via # contacts. The larger field quantum in turn must feed its
gauge fluxes in a similar manner to larger field quantum so that the hierar-
chical structure of topological condensate is implied by the compactness of
CP2 and gauge flux conservation. Criticality implies only that 3-surfaces of
arbitrarily large size are possible and therefore the number of the condensate
levels and corresponding length scales L(n) is infinite. Without criticality
there would be some upper bound for 3-surfaces and only vapor phase would
be possible.

The # contacts feeding the gauge fluxes from level pn to level pn+1 are
located near the boundaries of topological field quanta: otherwise long range
gauge fields would not be possible inside the topological field quanta. A more
quantitative hypothesis is that # contacts are located in the boundary layer
having thickness of order Lpn . If topological field quantum at level n has
the minimum size of order Lpn then the # contacts neutralize the physical
gauge charges on the average.
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2.3 Topological field quantization

Topological field quantization is a very general phenomenon differentiating
between the TGD based and Maxwellian field concepts and results from the
compactness of CP2 only, being independent of any dynamical assumptions.

Topological field quantization occurs for surfaces representable as maps
from M4 to CP2 and means that space time surface decomposes into re-
gions characterized by certain vacuum quantum numbers characterizing the
dependence of the phase angles Ψ and Φ associated with the two complex
coordinates ξ1 and ξ2 of CP2. There are two frequency type vacuum quan-
tum numbers ω1 and ω2 characterizing the time dependence, two wave vec-
tor like quantum numbers k1, k2 characterizing the z-dependence and two
integer valued vacuum quantum numbers n1, n2 characterizing the angle de-
pendence of these phase angles. Topological field quantization fixes unique
M4 and CP2 coordinates inside the field quantum and is analogous to a
choice of a quantization axis.

2.3.1 Topological field quanta

Before considering the general form of the surfaces representable as maps
M4 → CP2 some comments about CP2 coordinates are needed:

1. The so called Eguchi-Hanson coordinates for CP2 are given (r, u,Ψ,Φ) ∈
[0,∞]× [−1, 1]× [0, 4π]× [0, 2π] (see Appendix). Ψ and and Φ are an-
gle like coordinates closely related to the phases of the two complex
coordinates of CP2 and are the interesting variables in the sequel.

2. There are following types of coordinate singularities.
i) For r = 0 all values of Ψ and Φ correspond to same point of CP2.
ii) For r = ∞ all values of Ψ correspond to same point of CP2. For
u = 1 and u = −1 also all values of Φ correspond to same point of
CP2.

Consider now the space-time surface representable as a graph of a map
M4 → CP2. The general form of the angle coordinates Ψ and Φ as functions
of M4 cylindrical coordinates (t, z, ρ, φ) is given by the expression

Φ = ω1t + k1z + n1φ + Fourier expansion ,

Ψ = ω2t + k2z + n2φ + Fourier expansion . (1)
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There always exists a rest frame, where k1 or k2 vanishes. The Fourier
expansion is single valued in φ and finite in z and t. The vacuum quantum
numbers ω1 and ω2 are frequency type vacuum quantum numbers to be
referred as ”electric” quantum numbers. The quantum numbers (n1, n2) are
integer valued and will be referred to as ”magnetic” quantum numbers.

The values of the vacuum quantum numbers can change at the bound-
aries of the regions of space-time determined by the conditions
i) r = 0 and (r = ∞, u = ±1): here all vacuum quantum numbers can
change
ii) r = ∞: here only ω2, n2 and k2 can change.
Also the choice of CP2 coordinates and M4 coordinates can in principle
change: different CP2 coordinates are related by color rotation and different
M4 coordinates by Lorentz transformation.

In general, the boundaries of the regions correspond to edges of space-
time in the sense that CP2 coordinates possess discontinuous or infinite
derivatives at the boundaries of the field quanta. A natural manner to get
rid of the edges is to consider 3- surfaces consisting of a single region only
so that single region of this kind, topological field quantum, is a natural
unit of 3-space. There is however an important exception to this. The join
along boundaries interaction very probably means the gluing of two topo-
logical field quanta together along their boundaries and provides a manner
to construct coherent quantum systems from smaller units.

The sizes of the topological field quanta are indeed finite so that the
boundary of 3-space (quite essential for the ideas described before) is an
unavoidable consequence of the compactness of CP2 and the minimization
of the Kähler action. The dependence of the size of the 3-surface on the
vacuum quantum numbers is in accordance with the proposed interpretation:
at the limit of large vacuum quantum numbers the size of the topological
field quantum becomes macroscopic and at small vacuum quantum number
limit the size of the surface becomes small.

Very complicated hierarchical structures predicted by the RGI are in
principle possible since topological field quanta can suffer topological con-
densation on larger field quanta. Field quanta can become nested and both
spatial and temporal structures (nesting in time like direction) are possible.

2.3.2 The vacuum quantum numbers associated with vacuum ex-
tremals

Vacuum extremals define a reasonable starting point for TGD based model
for gravitational interactions. For vacuum extremals classical em and Z0
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fields are proportional to each other (see the Appendix of the book):

Z0 = 2e0 ∧ e3 =
r

F 2
(k + u)

∂r

∂u
du ∧ dΦ = (k + u)du ∧ dΦ ,

r =

√
X

1−X
, X = D|k + u| ,

γ = −p

2
Z0 . (2)

For a vanishing value of Weinberg angle (p = sin2(θw) = 0) em field vanishes
and only Z0 field remains as a long range gauge field.

The study of the imbeddings of the Schwartshild metric as vacuum ex-
tremals (gravitational mass is non-vanishing but inertial mass vanishes)
shows that astrophysical length scales correspond to large vacuum quantum
number limit of TGD. Any mass vacuum extremal is necessarily accompa-
nied by long ranged electro-weak and color fields and from the requirement
that the corresponding force is weaker than the gravitational force one ob-
tains that the value of the parameter ω1 is of the order of 1/R ∼ 10−4

√
G.

A simple example about the decomposition of space-time into topological
field quanta is obtained by considering the cylindrically symmetric imbed-
ding of a constant magnetic field in the z-direction as a vacuum extremal.
Electromagnetic field can be written as F em

ρφ = B0ρ and using the general
results from the Appendix of the book one can write

u = u(ρ) , Φ = n1φ ,

r =
√

X
1−X , X = D|k + u| ,

Aem
φ =

B0ρ
2

2
= −p

2
n1(k + u)∂ρu . (3)

Assuming that (r, u) = (0, 0) holds true at z-axis, the equation for em gauge
potential Aem fixes the relationship between ρ and u as

u = −k ±
√

k2 − 2B0ρ3

3n1p
. (4)

The finite value range 0 ≤ u ≤ 1 implies that the imbedding fails for certain
values of ρ. Also the requirement that u is real implies an upper bound for
ρ: the larger the value of n1 the larger the critical radius. Imbedding can
fail also for X < 0 and X > 1 corresponding to critical values of u equal
u0 = −k and D|(k + u1)| = 1.
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3 Gauge charges in TGD

The concept of gauge charge has been a source of chronic headache for TGD.
There are several questions waiting for definite answer. How to define gauge
charge? What is the microscopic physics behind the ’anomalous’ gauge
charges implied by long range gravitational fields. Are the gauge charges
quantized in elementary particle level or does the concept of anomalous
gauge charge make sense? How gauge charges relate to the classical gauge
fluxes.

3.1 Definition of the gauge charges in TGD

In TGD gauge fields are not primary dynamical variables but induced from
the spinor connection of CP2. There are two manners to define gauge charge:
group theoretical and classical.

3.1.1 Group theoretical definition of the gauge charges

In the purely group theoretical approach one can associate a non-vanishing
gauge charge to a 3-surface of finite size and the quantization of the gauge
charge follows automatically. This definition should work at CP2 length
scale, when particles are described as 3-surfaces of size R ∼ 104 × √

G
and the classical space-time mediating long range interactions makes no
sense. Gauge interactions are mediated by a gauge boson exchange, which
in TGD has topological description. Gauge boson exchanges are in a well
defined sense bridges along which also the classical fields can propagate.
A naive geometric argument however suggests that the exchange of CP2

type extremals gives rise to an extremely weak gauge interaction with cross
sections characterized by the geometric size of the CP2 type extremal. The
solution of the paradox is that elementary particles are actually generated in
topological condensation when the light-like causal determinant (elementary
particle horizon) associated with the wormhole contact becomes a carrier of
partonic quantum charges creating long range fields at the space-time sheet
of size at least of order Compton length of the particle.

3.1.2 Classical definition of the gauge charges

The classical definition of the gauge charge is as a gauge flux over a closed 2-
surface. The classical quantization of the gauge charges is perhaps possible
for some subset of mutually commuting charges and would be implied by
the absolute minimization of the Kähler action. For a closed 3-surface gauge
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flux vanishes and one might argue that this is the case for finite size 3-
surfaces with a boundary since the boundary conditions might generate a
gauge charge near the boundary cancelling the gauge charge created by the
particles condensed on the 3-surface.

This picture seems to be in conflict with the quantum view. The res-
olution of the paradox is simple. In length scales longer than the size of
space-time sheet gauge and gravitational interactions must be described in
terms of particle exchanges whereas the description in terms of classical
fields works only in length scales shorter than the size of the space-time
sheet.

3.1.3 Color gauge charges

In the case of gluons it is not so clear whether the gauge charges correspond
to classical gauge fluxes since the classical gluon fields (projections of the
SU(3) Killing vector fields to space-time surface) do not strictly speaking
correspond to genuine gauge fields. In any case, gluon field can be defined
and the components of the gluon field are of the form gA

µν ∝ HAJµν , where
HA is a Hamiltonian of the color isometry and J denotes the induced Kähler
form. The holonomy group of the classical color field is always Abelian which
by quantum classical correspondence suggests a weak form of confinement in
the sense that the allowed quantum states corresponds to the states of color
multiplets having vanishing color isospin and hyper charge. The explanation
of Centauro events and Pomeron in terms of quantum coherent topological
evaporation of the valence quarks [F5] suggests that only color singlet states
can evaporate.

There are two possibilities.

1. The quarks in the vapor phase have color charges but the total color
for the evaporated quarks vanishes. This statement makes physically
sense since massless gluon exchange implies a long range interaction
also in the vapor phase. In this case the identification of the gauge
charge as gauge flux is not possible.

2. Valence quark 3-surfaces are joined together via join along boundaries
bonds so that it is this structure, which evaporates and has indeed
vanishing total color gauge charge so that the identification of the color
charges as gauge fluxes is possible. There is a temptation to accept this
alternative since join along boundaries bonds can be identified as color
flux tubes implying a string like structure for mesons. The evaporation
of single sea quark or gluon is not possible in this picture. This raises
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the question about the definition of the quark gluon plasma: perhaps
quark gluon plasma corresponds to a state in which the join along
boundaries bonds between quarks are broken.

3.2 Questions related to gravitational interactions

3.2.1 Why gravitational interaction is so weak?

There are two explanations for the weakness of the gravitational interactions
and although these explanations look quite different they could be consistent
with each other.

1. The exchange of CP2 type extremal would in a well defined sense
create the bridge for the gravitational perturbation to propagate and
also explain the extreme weakness of the gravitational interaction. As
far as gravitation is considered, the evaporated particle would behave
in very much the same manner as the condensate particle.

2. p-Adic fractality leads to a quantitative argument explaining the ex-
treme weakness of the gravitational force and also predicting a hier-
archy of strong gravities analogous to the force mediated by spin 2
mesons [E1]. The idea is simple: the geodesic distance d(X4) between
interacting masses along space-time sheet is much longer than the dis-
tance d(M4) in M4 and related by a very large scaling factor to the
latter. This implies that strong gravitational coupling proportional
to L2

p is scaled down to a weak coupling when 1/d2(X4) in gravita-
tional force is expressed in terms of experimentally measured distance
d(M4). A possible interpretation is that d(X4) corresponds to the
length of topologically condensed gravitonic CP2 type extremal per-
forming random zitterbewegung. One could say that a kind of coast of
Great Britain effect makes gravitational interaction weak. L2

p would
in turn correspond to the area of the space-time sheet of the particle
emitting gravitons.

Clearly, the first argument would explain the weakness of gravitational in-
teraction described as an exchange of CP2 type extremals whereas second
argument would do the same when gravitation is described as a classical
long range force.
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3.2.2 How gravitational and inertial masses are related?

The general definition of gravitational mass is straightforward in terms of the
M4 projection of Einstein tensor and the definition involves no assumption
about the space-time surface [C3]. Gravitational mass is in general not
conserved. Gravitational four-momentum is in general non-vanishing and
non-conserved for all kinds of vacuum extremals, in particular CP2 type
vacuum extremals, so that Equivalence Principle in strong form cannot hold
true for them.

The assumption that gravitational energy corresponds to the absolute
value of the conserved inertial (Poincare) energy is attractive but it is not
clear whether it is really a general prediction of TGD. The identification of
absolute value of inertial rest energy as the average value of non-conserved
gravitational rest energy emerges very naturally in TGD based picture about
particle massivation. This identification indeed allows the sign of inertial en-
ergy to depend on the time orientation of space-time sheet. At configuration
space level the space-time surface with positive/negative time orientation
can be assigned to the boundary of a union of future/past directed light
cones.

3.2.3 Gravitational four-momentum of topologically evaporated
particle

The interpretation of the gravitational mass as a gauge flux associated with
gravitational potential makes sense in the non-relativistic limit. The prob-
lem is what happens to the particle’s gravitational mass in the topological
evaporation. Does gravitational mass of evaporated particle vanish? If this
is the case, can gravitational energy be non-vanishing?

The answer to these questions emerges from the study of CP2 type ex-
tremals. Einstein’s tensor for CP2 type extremal is proportional to the
metric tensor so that the non-conserved gravitational momentum is non-
vanishing and light-like being parallel to the light-like random curve defining
M4 projection of the CP2 type extremal. Hence gravitational rest mass of
cP2 type extremal vanishes in the vapor phase but not gravitational energy.

Since wormhole contacts can be identified as pieces of CP2 type extremals
carry gravitational four-momentum, the net gravitational four-momentum
of topologically evaporated space-time sheet carrying hierarchy of smaller
space-time sheets is the sum of the gravitational four-momenta associated
with wormhole contacts and non-vanishing.

In length scales shorter than the size of the topologically evaporated
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space-time sheet classical description of gravitational interaction makes sense
whereas in longer length scales description in terms of graviton exchanges is
the proper description.

3.2.4 What about Diff4 invariant deformation of Poincare alge-
bra?

The situation is complicated by the fact it is Diff4 invariant Poincare al-
gebra might correspond to a Lorentz invariant deformation of the ordinary
Poincare algebra [16], which corresponds to the quantum mechanical four-
momentum. A hypothesis worth of considering is whether the Diff invari-
ant four-momentum is equivalent with the gravitational four-momentum.
An interesting possibility is that only the Diff invariant rest mass rather
than four-momentum vanishes in the vapor phase. It is needless to empha-
size that this alternative has rather exciting implications in the (improbable)
case that topological evaporation is possible for macroscopic objects.

3.3 The problem of the anomalous gauge charges

The concept of anomalous gauge charges, was introduced in the earlier ver-
sions of the book. The experience from the study of the extremals of the
Kähler action shows that at astrophysical length scales gauges charges are
apart from numerical constant equal to the mass of the system using Planck
mass as unit:

Q = ε1
M

mproton
. (5)

The condition ε1√
αK

< 10−19 holds true in astrophysical length scales since
gauge forces must be weaker than gravitational interaction in astrophysical
length scales. Any mass distribution which can be modelled gravitationally
in terms of vacuum extremal long range em and Z0 gauge fields.

The path to what seems to be the correct interpretation of this result
was rather tortuous. This is understandable since the conclusion that theory
predicts an entire fractal hierarchy of scaled up variants of standard model
physics with arbitrarily long ranges of weak and strong interactions and
having interpretation in terms of dark matter hierarchy labelled by p-adic
length scales and by the values of a dynamical quantized Planck constant,
is not not something which would pop first in mind.
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3.4 The concept of the # contact, particle massivation, and
weakening of Equivalence Principle

There are two views about # contacts. The first view is purely classical
and developed first. The quantal view dictated by quantum classical cor-
respondence emerged much later and leads to a detailed understanding of
mechanisms of particle massivation (both p-adic thermodynamics and Higgs
mechanism are involved in TGD framework), of how inertial and gravita-
tional masses and related, and of breaking, or rather weakening, of Equiva-
lence Principle.

3.4.1 Classical and quantum views about # contacts

If the net gauge charge of a given condensate level is non-vanishing, there
must exist some mechanism feeding the gauge charge to the lower condensate
levels. The only possibility is provided by the # contacts obtained by drilling
small holes on the surfaces X3

1 and X3
2 and connecting the holes with at tube

D1 × S2. The assumption that classical gauge charges are quantized and
conserved forces also the quantization of the gauge fluxes associated with
the # contacts.

The conserved gauge flux corresponds at quantum level to the partonic
quantum numbers associated with either of the two light-like elementary par-
ticle horizon associated with the wormhole contact and are thus assignable
to fermionic oscillator operators associated with second quantized induced
spinor fields. Gauge flux is conserved only if the partonic quantum numbers
sum up to zero. In this picture # contacts become special kind of particles.

3.4.2 # contacts as particles

# contacts are expected to be very tiny, the size is presumably of the order
of CP2 radius and the simplest model is as a piece of CP2 type extremal.
This would mean that # contact can carry gravitational four-momentum
but has a vanishing gravitational rest mass. If it possesses inertial mass it
can be associated with the partons at the two elementary particle horizons
carrying the partonic quantum numbers.

Wormhole contacts are bosons and one can associate to them color, em
and Z0 gauge fluxes −Qi so that contacts behave as charged particles and
matter-contact and contact-contact interaction energies are non-vanishing.
The gauge fluxes associated with the contacts can be identified as the gauge
charges associated with either light-like elementary particle horizon in ab-
sence of possible renormalization and non-conservation effects.
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Bose-Einstein condensates of charged # contacts are described by a com-
plex order parameter quantum mechanically and the lightness of the worm-
holes implies BE condensation to the lowest energy state. Also coherent
states are possible. These states could be present in all length scales and
especially interesting are the applications of the concept to bio-systems [J3].
For instance, I have proposed that # contacts carrying quantum numbers of
neutrino-antineutrino pair would be involved with cognitive representations
[M6].

3.4.3 # contacts, non-conservation of gauge charges and gravita-
tional four-momentum, and Higgs mechanism

Gravitational # contacts are necessary and if gravitational energy can be
regarded in the Newtonian limit as a gauge charge, the contacts feed the
gravitational energy regarded as a gauge flux to the lower condensate levels.
The non-conservation of gravitational gauge flux means that # contacts can
carry gravitational four-momentum and since CP2 type vacuum extremals
are the natural candidates for # contacts, the natural hypothesis is that
the non-conserved light-like gravitational four-momentum of # contacts is
responsible for the non-conservation of gravitational four-momentum flux.
The non-conservation of the light-like gravitational four-momentum of CP2

type extremals would in turn be responsible for the non-conservation of the
net gravitational four-momentum.

# contacts could be also carriers of inertial mass which must be con-
served in absence of four-momentum exchange between environment and
wormhole contact. Therefore Equivalence Principle cannot hold true in a
strict sense. Equivalence Principle would be satisfied in a weak sense if
the inertial four-momentum is equal to the average four-momentum associ-
ated with the zitterbewegung motion and corresponds to the center of mass
motion for the # contact.

The non-conservation of weak gauge currents for CP2 type extremals
implies a non-conservation of weak charges and the finite range of weak
forces. If wormhole contacts correspond to pieces of CP2 type vacuum ex-
tremal, electro-weak gauge currents are not conserved classically unlike color
and Kähler current. The non-conservation of weak isospin corresponds to
the presence of pairs of right/left handed fermion and left/right handed an-
tifermion at wormhole contacts. These wormhole contacts are excellent can-
didates for the TGD counterpart of Higgs boson providing the most natural
mechanism for the massivation of weak bosons. The dominant contribution
to fermion mass would be due to p-adic thermodynamics [F3]. If weak form
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of Equivalence Principle holds true, inertial mass would result simply as the
average of non-conserved light-like gravitational four-momentum.

There would be two contributions to the mass of the elementary particle.

1. Part of the inertial mass is generated in the topological condensation
of CP2 type extremal representing elementary particle involving only
single light like elementary particle horizon, say fermion, and would
correspond naturally to the contribution to the mass modellable using
p-adic thermodynamics. The contribution from primary topological
condensation is negligible if the radius of the zitterbewegung orbit is
larger than the size of the space-time sheet containing the topologically
condensed boson so that the motion is along a light-like geodesic in
a good approximation. For gauge bosons this contribution should
be very small or vanishing. Systems like superconductors where also
photons and even gravitons can become massive [D3] might form an
exception in this respect.

2. The space-time sheet representing massless state suffered secondary
topological condensation at a larger space-time sheet and viewed as a
particle can develop an additional contribution to the mass via Higgs
mechanism since the wormhole contacts cannot be regarded as moving
along light like geodesics of M4 in the length and time scale involved.
# contacts carrying a net weak isospin would have interpretation as
TGD counterparts of neutral Higgs bosons and the formation of co-
herent state involving a superposition of states with varying number
of wormhole contacts would correspond to the generation of a vacuum
expectation value of Higgs field. The inertial mass of the wormhole
contact must be small, presumably its order of magnitude is given by
1/Lp, where Lp is the characteristic p-adic length scale associated with
a given condensate level.

There has been considerable further progress in the understanding of
Higgs mechanism.

1. The generalized complex eigenvalues λ of the modified Dirac operator
which can depend on position are excellent candidates for the space-
time correlate of order parameter representing the Higgs expectation
value [C1]. These eigenvalues can be also regarded as a complex square
roots of real conformal weights since their modulus squared has the
role of mass squared. In this framework Higgs expectation can be
interpreted as a thermal expectation for λ.
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2. The view about fermions as wormhole throats and about gauge bosons
and Higgs as pairs of wormhole throats associated with wormhole con-
tacts suggests strongly that fermions cannot develop vacuum expec-
tation value of Higgs. This hypothesis is consistent with the notion
of generalized Feynman diagram and with p-adic mass calculations
and leads to a very stringent model of hadron masses based on the
experimental value range for top quark mass [F4, F5]. There is also
an argument allowing to deduce the p-adic temperature assignable to
gauge bosons [C3] and the predicted value of p-adic temperature is so
low (Tp = 1/26) that only Higgs contribution to the gauge boson mass
matters. For fermions p-adic temperature equals to Tp = 1.

3.4.4 Spatial distribution of # contacts

The existence of the # contacts allows also an elegant solution to the bound-
ary conditions associated with the extremals of the Kähler action. If the
space-time surface becomes vacuum near its boundaries the boundary con-
ditions (dictated by the variational principle rather than being posed sep-
arately as in string models) are satisfied identically. Furthermore, one can
obviously regard the hierarchical structure of the topological condensate
more or less as a consequence of the boundary conditions.

Concerning the spatial distribution of the # contacts there are obvious
constraints. Consider first the condensate blocks containing a large number
of elementary particles:

1. Contacts behave as classical gauge fluxes and cause a screening of
the classical gauge charges of the ordinary matter on both space-time
sheets. The work with classical TGD led to the conclusion that long
range classical Z0 and/or electromagnetic gauge fields are necessary
in order to have long range gravitational fields. This suggests that #
contacts feeding the gauge flux to lower condensate levels are located
near the boundaries of 3-surface. There is indeed a good mathemat-
ical reason for this: near the boundaries the imbedding of the gauge
fields created by the interior gauge charges becomes impossible and the
only possibility to satisfy the boundary conditions is that the gauge
fluxes flow to lower condensate level and the surface becomes vacuum
extremal near the boundary.

2. It must however emphasized that a random distribution of the # con-
tacts inside entire condensate block is not totally excluded. The point
is that the exchange of photon and graviton 3-surfaces can give rise to
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long range force even in the absence of classical fields. As far as pho-
ton/graviton exchange is considered, # contacts behave as extremely
small dipoles. It is the results of classical TGD, which support the
idea of classical long range fields. For gauge bosons the density of
boundary # contacts should be very small in length scales, where the
matter is essentially neutral. For gravitational # contacts the situa-
tion is different. One might well argue that there is some upper bound
for the gravitational flux associated with single # contact given by,
say, Planck mass or CP2 mass so that the number of gravitational
contacts would be proportional to the mass of the system.

3. An important question is how # contacts are created and destroyed.
The creation of charged # contact leads to the appearance of a radial
gauge field in condensate and this seems to be impossible since it in-
volves a radical instantaneous change in the field line topology. The
simplest and the least exotic manner to solve the difficulty is to as-
sume that # contacts are created in particle-antiparticle annihilation.
The particle and antiparticle belonging to different space-time sheets
can join along their boundaries via the emission of radiation so that
both boundary components disappear and # contact is created. This
conforms with the identification of # contacts as CP2 type vacuum
extremals condensed at two space-time sheets simultaneously.

Figure 3: Gauge and gravitational fluxes run to lower condensate level via
# contacts located near boundaries.
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3.4.5 Quantum numbers of vapor phase particles

For a long time the attempts to characterize vapor phase particles remained
a mixture of arguments involving classical gauge flux thinking and group
theoretical quantum arguments which tended to be contradictory. The re-
cent picture is free of these inconsistencies and allows understand how the
quantum numbers of vapor phase particles are determined.

Gauge charges of vapor phase particles correspond to the net gauge
charges of topologically condensed elementary particles plus those associ-
ated with # contacts and representing non-conservation: only weak isospin
I3
L receives the latter contribution. The conserved inertial four-momentum

is identifiable as the sum of average gravitational four-momenta assignable
to the elementary particle horizons. The exchanges of space-time sheets, in
particular CP2 type extremals representing elementary particles provides a
description for the interactions of vapor phase particles.

3.5 Are all elementary gauge bosons wormhole contacts?

The hypothesis that quantum TGD reduces to a free field theory at parton
level is consistent with the almost topological QFT character of the theory
at this level. Hence there are good motivations for studying explicitly the
consequences of this hypothesis.

3.5.1 Elementary bosons must correspond to wormhole contacts
if the theory is free at parton level

Also gauge bosons could correspond to wormhole contacts connecting MEs
[D1] to larger space-time sheet and propagating with light velocity. For
this option there would be no need to assume the presence of non-physical
fermion or anti-fermion polarization since fermion and anti-fermion would
reside at different wormhole throats. Only the definition of what it is to
be non-physical would be different on the light-like 3-surfaces defining the
throats.

The difference would naturally relate to the different time orientations
of wormhole throats and make itself manifest via the definition of light-like
operator o = xkγk appearing in the generalized eigenvalue equation for the
modified Dirac operator [A6]. For the first throat ok would correspond to
a light-like tangent vector tk of the partonic 3-surface and for the second
throat to its M4 dual t̂k in a preferred rest system in M4 (implied by the
basic construction of quantum TGD). What is nice that this picture non-asks
the question whether tk or t̂k should appear in the modified Dirac operator.
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Rather satisfactorily, MEs (massless extremals, topological light rays)
would be necessary for the propagation of wormhole contacts so that they
would naturally emerge as classical correlates of bosons. The simplest model
for fermions would be as CP2 type extremals topologically condensed on
MEs and for bosons as pieces of CP2 type extremals connecting ME to the
larger space-time sheet. For fermions topological condensation is possible to
either space-time sheet.

3.5.2 What about light-like boundaries and macroscopic worm-
hole contacts?

Light-like boundaries of the space-time sheet can have macroscopic size and
can carry free many-fermion states but not elementary bosons. Number
theoretic braids and anyons might be assignable to these structures. De-
formations of cosmic strings to magnetic flux tubes with a light-like outer
boundary are especially interesting in this respect.

If the ends of a string like object move with light velocity as implied
by the usual stringy boundary conditions they indeed define light-like 3-
surfaces. Many-fermion states could be assigned at the ends of string. One
could also connect in pairwise manner the ends of two time-like strings
having opposite time orientation using two space-like strings so that the
analog of boson state consisting of two wormhole contacts and analogous
to graviton would result. ”Wormhole throats” could have arbitrarily long
distance in M4.

Wormhole contacts can be regarded as slightly deformed CP2 type ex-
tremals only if the size of M4 projection is not larger than CP2 size. The
natural question is whether one can construct macroscopic wormhole con-
tacts at all.

1. The throats of wormhole contacts cannot belong to vacuum extremals.
One might however hope that small deformations of macrosopic vac-
uum extremals could yield non-vacuum wormhole contacts of macro-
scopic size.

2. A large class of macroscopic wormhole contacts which are vacuum
extremals consists of surfaces of form X2

1×X2
2 ⊂ (M1×Y 2)×E3, where

Y 2 is Lagrangian manifold of CP2 (induced Kähler form vanishes)
and M4 = M1 × E3 represents decomposition of M1 to time-like and
space-like sub-spaces. X2

2 is a stationary surface of E3. Both X2
1 ⊂

M1 × CP2 and X2
2 have an Euclidian signature of metric except at
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light-like boundaries X1
a × X2

2 and X1
b × X2

2 defined by ends of X2
1

defining the throats of the wormhole contact.

3. This kind of vacuum extremals could define an extremely general class
of macroscopic wormhole contacts as their deformations. These worm-
hole contacts describe an interaction of wormhole throats regarded as
closed strings as is clear from the fact that X2 can be visualized as
an analog of closed string world sheet X2

1 in M1 × Y 2 describing a
reaction leading from a state with a given number of incoming closed
strings to a state with a given number of outgoing closed strings which
correspond to wormhole throats at the two space-time sheets involved.

3.5.3 Phase conjugate states and matter- antimatter asymmetry

By fermion number conservation fermion-boson and boson-boson couplings
must involve the fusion of partonic 3-surfaces along their ends identified as
wormhole throats. Bosonic couplings would differ from fermionic couplings
only in that the process would be 2 → 4 rather than 1 → 3 at the level of
throats.

The decay of boson to an ordinary fermion pair with fermion and anti-
fermion at the same space-time sheet would take place via the basic vertex
at which the 2-dimensional ends of light-like 3-surfaces are identified. The
sign of the boson energy would tell whether boson is ordinary boson or its
phase conjugate (say phase conjugate photon of laser light) and also dictate
the sign of the time orientation of fermion and anti-fermion resulting in the
decay.

The two space-time sheets of opposite time orientation associated with
bosons would naturally serve as space-time correlates for the positive and
negative energy parts of the zero energy state and the sign of boson energy
would tell whether it is phase conjugate or not. In the case of fermions
second space-time sheet is not absolutely necessary and one can imagine
that fermions in initial/final states correspond to single space-time sheet of
positive/negative time orientation.

Also a candidate for a new kind interaction vertex emerges. The split-
ting of bosonic wormhole contact would generate fermion and time-reversed
anti-fermion having interpretation as a phase conjugate fermion. This pro-
cess cannot correspond to a decay of boson to ordinary fermion pair. The
splitting process could generate matter-antimatter asymmetry in the sense
that fermionic antimatter would consist dominantly of negative energy anti-
fermions at space-time sheets having negative time orientation [D5, D6].
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This vertex would define the fundamental interaction between matter
and phase conjugate matter. Phase conjugate photons are in a key role
in TGD based quantum model of living matter. This involves model for
memory as communications in time reversed direction, mechanism of in-
tentional action involving signalling to geometric past, and mechanism of
remote metabolism involving sending of negative energy photons to the en-
ergy reservoir [K1]. The splitting of wormhole contacts has been considered
as a candidate for a mechanism realizing Boolean cognition in terms of ”cog-
nitive neutrino pairs” resulting in the splitting of wormhole contacts with
net quantum numbers of Z0 boson [J3, M6].

3.6 Graviton and other stringy states

Fermion and anti-fermion can give rise to only single unit of spin since
it is impossible to assign angular momentum with the relative motion of
wormhole throats. Hence the identification of graviton as single wormhole
contact is not possible. The only conclusion is that graviton must be a
superposition of fermion-anti-fermion pairs and boson-anti-boson pairs with
coefficients determined by the coupling of the parton to graviton. Graviton-
graviton pairs might emerge in higher orders. Fermion and anti-fermion
would reside at the same space-time sheet and would have a non-vanishing
relative angular momentum. Also bosons could have non-vanishing relative
angular momentum and Higgs bosons must indeed possess it.

Gravitons are stable if the throats of wormhole contacts carry non-
vanishing gauge fluxes so that the throats of wormhole contacts are con-
nected by flux tubes carrying the gauge flux. The mechanism producing
gravitons would the splitting of partonic 2-surfaces via the basic vertex.
A connection with string picture emerges with the counterpart of string
identified as the flux tube connecting the wormhole throats. Gravitational
constant would relate directly to the value of the string tension.

The TGD view about coupling constant evolution [C3] predicts G ∝ L2
p,

where Lp is p-adic length scale, and that physical graviton corresponds to
p = M127 = 2127 − 1. Thus graviton would have geometric size of order
Compton length of electron which is something totally new from the point
of view of usual Planck length scale dogmatism. In principle an entire p-adic
hierarchy of gravitational forces is possible with increasing value of G.

The explanation for the small value of the gravitational coupling strength
serves as a test for the proposed picture. The exchange of ordinary gauge
boson involves the exchange of single CP2 type extremal giving the expo-
nent of Kähler action compensated by state normalization. In the case of
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graviton exchange two wormhole contacts are exchanged and this gives sec-
ond power for the exponent of Kähler action which is not compensated. It
would be this additional exponent that would give rise to the huge reduction
of gravitational coupling strength from the naive estimate G ∼ L2

p.
Gravitons are obviously not the only stringy states. For instance, one

obtains spin 1 states when the ends of string correspond to gauge boson and
Higgs. Also non-vanishing electro-weak and color quantum numbers are pos-
sible and stringy states couple to elementary partons via standard couplings
in this case. TGD based model for nuclei as nuclear strings having length
of order L(127) [F8] suggests that the strings with light M127 quark and
anti-quark at their ends identifiable as companions of the ordinary graviton
are responsible for the strong nuclear force instead of exchanges of ordinary
mesons or color van der Waals forces.

Also the TGD based model of high Tc super-conductivity involves stringy
states connecting the space-time sheets associated with the electrons of the
exotic Cooper pair [J1, J2]. Thus stringy states would play a key role in
nuclear and condensed matter physics, which means a profound departure
from stringy wisdom, and breakdown of the standard reductionistic picture.

4 The new space time picture and some of its con-
sequences

The previous considerations suggest that TGD space-time has a hierarchical,
fractal like structure consisting of an infinite number of condensate levels
n characterized by length scale L(n) < L(n + 1) identifiable as a typical
size for 3-surface at level n. Spin glass analogy suggests that the label n
corresponds to preferred primes characterizing p-adic length scales and to
values of Planck constant labelling levels of dark matter hierarchy. p-Adic
fractality means that for each p there is actually a length scale hierarchy
coming in powers of

√
p. An infinite hierarchy of copies of standard model

physics is an unavoidable prediction if quantum classical correspondence is
taken seriously and can be identified as dark matter hierarchy.

4.1 Topological condensation and formation of bound states

It is tempting to identify the physical counterpart of the topological conden-
sate in the length scale L as a bound state with size L. If this assumption is
accepted then one ends up to the rather beautiful general scenario for the hi-
erarchical structure of the 3-space. Quarks (3-surface of size of CP2 length,
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so called CP2 type extremals to be discussed later) condense around the
hadronic 3-surfaces, hadrons condense around a piece of Minkowski space
with size of order 10−14 − 10−15 meters to form nuclei, nuclei and electrons
condense to form atoms of size of the order 10−10 meters or larger, atoms
condense to form molecules, etc.

Generalizing the previous ideas, one ends up to a rather exciting pos-
sibility for a topological description of the macroscopic states of matter.
Consider solids as an example. Solids correspond to a regular lattice of
atomic or molecular 3-surfaces condensed to background 3-space. There are
two kinds of forces binding the structure together.
i) There are interactions mediated via the the fields of the background 3-
space and these correspond to the ordinary electric forces.
ii) There is interaction resulting from the ”contacts” between the bound-
aries of the neighboring atoms (for a two-dimensional visualization see Fig.
4.1). Join along boundaries bond means mathematically a tube D2 × D1

connecting the boundaries together or equivalently, topological condensa-
tion for the boundaries. This interaction is completely new and has as its
counterpart the forces generated by the electron exchange between atoms
believed to explain the binding between the atoms of certain solids. It is
however clear that something quite new is introduced so that the conven-
tional belief that Schrödinger equation in a flat 3-space alone explains these
interactions would not be correct in TGD context. That the approach based
on Schrödinger equation have not lead to contradictions can be understood
also: what join along boundaries bond makes is to select among possible
solutions of Schrödinger equation those realized in Nature by forcing the
Schrödinger amplitude to the bridges connecting different structural units.

The topological description of the liquid state goes along similar lines.
Now however the contacts between neighboring atoms are not so rigid the
reason being that thermal noise continually splits these contacts. A com-
pletely new element is the emergence of the vacuum quantum numbers and
should lead to effects differentiating between TGD and more conventional
approaches.

4.2 3-topology and chemistry

The practical models for chemical systems rely on the assumption that a
chemical element has a well defined geometric shape. If this assumption is
made then Schrödinger equation in electronic degrees of freedom combined
with symmetry considerations gives satisfactory results. The general belief
is that the complete Scrödinger equation treating quantum mechanically
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Figure 4: How one could understand the solid state topologically in terms
of the join along boundaries interaction: 2-dim. visualization

also the positions of the atoms predicts also the geometric structure of the
chemical compounds. Unfortunately, in practice it is not possible to check
numerically the correctness of this belief.

The ”join along boundaries” interaction is a second standard phenomeno-
logical concept in the chemistry. What happens that reactants join along a
part of their boundaries together to form a transition state (or a final state)
and the reaction takes place in the new geometry. The chemistry of the
biological systems relies heavily on this concept. For example, the catalytic
action of the enzymes is often understood on the basis of key and lock prin-
ciple: enzyme acts on the protein only provided the surfaces of the protein
and enzyme fit together like lock and key. Usually it is believed that the
association of a geometric form to chemical compounds and the ”join along
boundaries” mechanism provide an easy short hand description, which is in
principle derivable from the complete Schrödinger equations. TGD suggests
that this is not be the case.

What is exciting that this kind of idea leads to a completely fresh ap-
proach to the understanding of bio-systems: the basic principles of the un-
derlying the biochemistry could be formulated in terms of the 3-topology.
The biological information processing could involve the manipulation of the
3-topology or more precisely: the manipulation of the boundary topology
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if ”join along boundaries” is indeed the basic mechanism. It should no-
ticed also that the emergence of the vacuum quantum numbers is purely
TGD:eish feature and provides a possible means for realizing the Universe
as Computer idea in biological systems. xc

4.3 3-topology and super-conductivity

The #-contacts (wormholes) feeding the gauge fluxes from a given sheet of
the 3-space to a larger one, can be regarded as particles carrying classical
charges defined by the gauge fluxes. These particles must be light, which
suggests that #-contacts can form Bose-Einstein condensate or coherent
state identifiable in terms of Higgs vacuum expectation value. This BE
condensate provides a possible explanation of so called Comorosan effect
[28] observed in organic molecules. A related effect is the formation of exotic
atoms, when some valence electrons drop from the atomic space-time sheet
to a larger space-time sheet. This process is accompanied by the generation
of # contacts. The process leads to the effective lowering of the valence of
the original atom and thus to ”electronic alchemy”. The claimed peculiar
properties of so called ORMES [30] could have explanation as exotic atoms
as suggested in [J1, J2, J3].

I have also suggested that the basic mechanism of super-conductivity
somehow involves quantum coherent states of wormhole contacts. This
might be the case although not quite in the original sense. There are two
poorly understood problems involved with super-conductivity.

1. Super-conductor is often modelled as a coherent state of Cooper pairs.
The conceptual problem is that the electric charge of this state is not
well-defined and this is definitely in conflict with the conservation of
electromagnetic charge.

2. The massivation of photons is a second poorly understood basic as-
pect of super-conductivity. The obvious question is whether this pro-
cess could be interpreted in terms of a vacuum expectation value of a
charged Higgs field and whether the charge of the Higgs field resolve
the paradox otherwise created by the non-conservation of electromag-
netic charge.

The obvious guess is that superconductor corresponds to superposition
of quantum states with a well-defined total em charge such that electronic
electromagnetically charge of some electronic Cooper pairs has been trans-
ferred to neutral wormhole contacts having quantum numbers of charged
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left/right handed positron and neutral right/left handed neutrino so that
some Cooper pairs themselves have been transmuted to neutrino Cooper
pairs.

In ordinary phase a space-time sheet carrying N Cooper pairs would
feed em charge to a larger space-time sheet by 2N wormhole contacts con-
sisting of e+e− parton pair. Super-conducting phase would correspond to a
superposition of states for which 2M ≤ 2N wormhole contacts have become
electromagnetically charged and 2M electrons have transformed to neutri-
nos. Coherent state would thus correspond to a superposition of states with
M ≤ N neutrino pairs, N − M Cooper pairs, and 2M charged wormhole
contacts.

The presence of exotic W bosons mediating weak interactions in the
scale of the space-time sheet would make possible this kind of states (which
involved entanglement between wormhole contacts and Cooper pairs). The
model would require that neutrinos and electrons in the superconducting
phase have nearly identical masses and thus correspond to p = M127, the
largest Mersenne prime which corresponds to non-super-astronomical p-adic
length scale. This conforms also with the absence of electro-weak symmetry
breaking below the p-adic length scale characterizing the size of the Cooper
pair. Also the quantum model for hearing [M6] requires that exotic neutrinos
with mass very near to electron mass are involved. The TGD based model for
atomic nucleus [F8] in turn predicts that quarks with mass near to electron
mass appear at the ends of the color bonds connecting nucleons.

4.4 Macroscopic bodies as a topology of 3-space

The natural generalization of the foregoing ideas is that even the macroscopic
bodies of the everyday world correspond to 3-surfaces, which have suffered
topological condensation to the background 3-space. The outer surfaces of
the macroscopic bodies would correspond to the boundaries of a particular
space-time sheet. When macroscopic bodies touch each other, a partial join
along boundaries would take place. We would live in the middle of a wild
science fiction without realizing it!

Paradoxically, this new interaction is extremely familiar for us. The
surface of the Earth corresponds to a boundary of a rather big 3-surface.
At smaller length scales we see flowers, trees and all kinds of things and
also these are 3-surfaces, which have joined along their boundaries to the
surface of the Earth. Our biological bodies correspond to 3-surfaces having
boundaries. We have however the special ability to cut this contact rather
easily and to move quite freely although the gravitational force acting in
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the background 3- space takes care that the join along the boundaries with
the surface of Earth is the usual state of affairs. When I touch the surface
of the table by finger, a join along boundaries interaction takes place: we
even recognize different objects just by touching them. We also smell and
taste and at the microscopic level these senses are based on the join along
boundaries interaction. Despite all this it has not been explicitly recognized
that the formation of the join along boundaries bond might be a fundamental
physical interaction!

What is also amusing that the implicit assumptions of any physical model
of the macroscopic world is based on the assumptions about the geometric
form of the physical objects and also the join along boundaries interaction is
introduced implicitly into the description. For example, in order to describe
solid state one draws lattice: one draws atoms in this lattice and bonds
between the atoms. A second example is provided by the description of
mechanical system consisting of rigid bodies.

In present picture this description is obtained by projecting the boundary
of the 3- space to flat space E3 : matter in the conventional sense corresponds
to the shadow of the boundary-topology of 3-surface (for a 2-dimensional
illustration see Fig.4.4). The fact that this kind of description is so obvious
masks the fact that it is far from trivial whether one can actually deduce
this kind of description starting from wave mechanics or QED.

Figure 5: 3-dimensional matter as projection of the boundary of 3-surface
to E3: 2-dim. visualization
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What is so exciting that we can deduce the rough features of the topology
of the surrounding 3-space just by looking it in various scales! Single glance
shows that this topology is extremely complicated and contains boundaries
everywhere and in all scales. In any case, it is in principle possible to make
a map of a 3-surface in H both by observation of the form of macroscopic
bodies and by measuring the ordinary physical observables like electromag-
netic fields. Note that the fractal properties of the world are in accordance
with the prediction of RGI hypothesis that topological condensate has hier-
archical structure containing 3-surfaces of all possible sizes.

To summarize, topological condensation seems to provide a purely topo-
logical description for the generation of structures. The concept of matter
in topologically trivial, almost flat 3-space is replaced with an empty but
topologically highly nontrivial 3-space. The idea leads to a concrete pro-
gram of actually finding out what is the topology of a given form of matter
and understanding the physical properties matter in terms of this topology!
And it would surprising if this kind of understanding would not increase our
abilities to control and manipulate the properties of the matter.

4.4.1 Topological field quantum as a coherent quantum system

There are several arguments suggesting that topological field quanta are
good candidates for coherent quantum systems and that join along bound-
aries provides basic means for constructing larger quantum systems from
smaller units.

1. The choice of the coordinates inside a given field quantum is analogous
to the choice of the quantization axis. This suggests that the topo-
logical field quanta might provide a topological description of certain
aspects of quantum phenomena. The choice of the quantization axis
could indeed correspond to that taking place in quantum measure-
ment. The fact that the quantization axes associated with different
connected 3-surfaces need not be the same is in accordance with the
idea that quantum coherence is possible for a connected 3-surface only.
An exception is provided by a system consisting of several topological
field quanta connected by ”bridges” (join along boundaries bonds), for
which quantization axis are same and which therefore can be be re-
garded as a coherent quantum system. As an example consider a spin-
ning particle in a constant magnetic field. To describe the situation
one must construct the imbedding of the magnetic field on the particle
3-surface by requiring that the resulting 4-surfaces corresponds to a
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preferred extremals of Kähler action. The simplest manner to achieve
this is to assume that the quantization axis defining the vacuum quan-
tum numbers n1 and n2 is in the direction of the magnetic field so that
one say that the external magnetic field fixes the quantization axis.

2. 3-surfaces consisting of several field quanta are in general unstable in
accordance with that fact that the formation of macroscopic quantum
systems is also a rare phenomenon. The argument goes as follows.
i) CP2 coordinates tend to have discontinuous or have even infinite
derivatives at the boundaries of the topological field quanta if one
poses some rather sensible physical requirements like the requirement
that the 3-surface provides an imbedding for the Kähler electric field
created by the mass distribution. As a consequence, Einstein tensor
contains delta function type singularities and this is not nice. The best
manner to avoid the edges is to allow boundaries.
ii) The boundaries of a 3-surface consisting of several field quanta are
in general carriers of surface Kähler (Z0) charge as the following ar-
gument shows. The embedding of the Kähler electric field associated
with a given matter distribution has certain critical radius, which cor-
responds to the boundary of a field quantum. In general, one cannot
continue the imbedding to a neighboring field quantum without allow-
ing infinite derivatives of CP2 coordinates.
iii) The 3-surface consisting of several field quanta is not stable unless
the condition u = cos(Θ) = ±1 is satisfied on r = ∞ surfaces. The
point is that the excitations of Φ coordinate in general imply disconti-
nuity of 3-surface at the boundary unless they are strongly correlated
for neighboring field quanta.

3. The gluing of topological field quanta is probably possible by the join
along boundaries bonds. The tube D2×D1 or the ”bridge” between the
two topological field quanta corresponds to a topological field quan-
tum. The most probable ”hot spots”, where the gluing is possible
correspond to parts of the surface, where the normal component of
the Kähler electric field is vanishing. Now however the stability of the
join along boundaries bond is not obvious. It can also happen that the
directions of the induced Kähler fields are same on some portions of
the boundaries and in this case the gluing by joing along boundaries
bond serving as a Kähler electric flux tube is possible: in this case the
stability of the bond is obvious. The color electric flux tubes between
valence quarks provide a good example of this.
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4.4.2 Topological description of supra phases

The topological construction recipe of a supra phase could be following. Take
volumes of ordinary phase with a size of order of coherence length ξ, topo-
logically condense them to the background 3-space and construct ”bridges”
between the boundaries of these structures. Supra phase is destroyed if the
bridges are cut either thermally or by external magnetic field: the introduc-
tion of an external magnetic field indeed destroys the bridge since it implies
that the quantum numbers n1 and n2 become in general non-vanishing in-
side the field quanta and bridge so that the order parameter ψ becomes
discontinuous on the boundaries of bridges.

In the ground state of the supra phase the order parameter describing
the supra phase is covariantly constant. Since the topology of the join along
boundaries condensate is extremely complicated, the first homotopy group
of the condensate is nontrivial. This means that one in general cannot find
a global gauge transformation gauging the gauge potential associated with a
vanishing magnetic field away. This implies that the phase increment of the
order parameter along a closed homotopically nontrivial loop is in general
nontrivial. These increments obviously contain information coded into the
order parameter about the topology of the join along boundaries condensate.

The BE condensate of the charged # contacts, giving rise to pseudo
super conductivity, playd a key role in the earlier TGD inspired model of
brain as a macroscopic quantum system. In the model discussed in this
chapter the coherent state of Cooper pairs is replaced with an entangled
state involving product states of 2M charged wormhole contacts, N − M
electronic Cooper pairs, and M neutrino cooper pairs. One can also ask
whether the vacuum quantum numbers might provide a realization for the
idea about Universe as Computer. Biological information processing might
be based on the manipulation of the vacuum quantum numbers. These ideas
will be developed in some detail in the last part of the book.

4.4.3 Topological description of dissipation

The previous topological ideas lead to a general ideas about how structures
are generated at macroscopic level. There is however a standard approach
to the description of the generation of structures [31] and in this approach
dissipative mechanisms play central role. The basic idea is that dissipation
takes care that an open system ends up to some asymptotic state, which
need not be thermal equilibrium but can be a complicated dynamic, non-
equilibrium state.
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The topological definition of the quantum coherence suggests that these
approaches are in fact very closely related. Dissipation means certainly a
loss of quantum coherence since for a coherent quantum system density ma-
trix develops unitarily so that dissipation is impossible. Quantum coherence
is lost at a given level of condensation hierarchy if the condensate consists
of several 3-surfaces interacting through standard interactions only. The
formation of the join along boundaries bonds however creates quantum co-
herence. Therefore the breaking of the join along boundaries bonds provides
a good candidate for a fundamental dissipation mechanism.

To make the idea more concrete consider as an example liquid flow, as-
suming that there is a velocity gradient in a direction orthogonal to the
velocity. What one wants to understand is the friction or how the energy of
the liquid is dissipated. Liquid molecules have typically join along bound-
aries contacts (tube D2×D1 ) with the neighboring molecules ( and due to
thermal motion these contacts are continuously splitting and rejoining. The
average age of a typical contact is much smaller than the time scale associ-
ated with the motion of a liquid so that the contact between two neighboring
molecules suffers several thermally induced splittings and re-joinings, when
the neighboring molecule pass by. A natural assumption is that the contact
between two neighboring molecules is like a rubber band: energy is needed
to stretch it. Assume that contact is formed between neighboring atoms
moving with certain relative velocity so that the contact gets longer and
splits after certain average time. The energy needed to stretch the con-
tact longer is taken from the energy of the translational motion so that the
relative motion becomes slightly slower.

As a second example, consider the understanding of the finite conductiv-
ity in metals. The neighboring atoms in the metal form a lattice and there
are contacts between the neighboring atoms. These contacts are not com-
pletely stable but suffer splittings now and then. The large conductivity of
the metal results from these contacts since they provide for the conduction
electrons the bridges to move from one atomic 3-surface to a another one.
The finiteness of the conductivity results from the fact that now and then
a bridge between two neighboring atoms is broken. In the last part of the
book it will be found that this kind of argument leads to a correct order
of magnitude estimate for the metallic conductivity using a TGD inspired
modification of the Drude model.

The concept of topological condensate affords also a second new point
of view concerning the description of dissipation. The standard description
of dissipation is in terms of inelastic collisions of particles. This description
generalizes: particles at the condensate level n correspond to topological field
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quanta of level n−1 with typical size L(n−1). In inelastic collisions of these
particles join along boundaries contacts are created and split and part of
kinetic energy is transferred to the kinetic energy of topological field quanta
of level n− 2 condensed on level n− 1 field quanta. This mechanism makes
possible the gradual transfer of the kinetic energy to the atomic length scales,
where the collisions of ordinary particles take care of the further dissipation.
Some potential applications of this picture are provided by hydrodynamics:
ordinary hydrodynamics generalizes to a hierarchy of hydrodynamics, one
for each condensate level plus a model for the energy and momentum transfer
between two subsequent levels.

5 Topological condensation and color confinement

In this section a simple semiclassical model of color confinement is con-
structed as an application of the previous ideas. Also a view about color
confinement being based on the same mechanism as the generation of macro-
scopic and macro-temporal quantum coherence (crucial for the TGD inspired
theory of consciousness [K2] is discussed. These two arguments are sepa-
rated by a temporal distance longer than decade and their different style
reflects the development of my own thinking about TGD.

5.1 Explanation of color confinement using quantum classi-
cal correspondence

One can understand color confinement from the properties of the Kähler
action by applying quantum classical correspondence.

1. The classical color gauge field is proportional to HAJαβ, where HA

is color Hamiltonian. This implies that the color holonomy group is
Abelian. This suggests strongly that the physical states correspond
states of color multiplets having vanishing color hyper charge and
isospin. This would mean a weak form of color confinement.

2. The proportionality of the gluon field to the induced Kähler field,
approximately satisfying free Maxwell equations, implies that the di-
rection of the classical color field in M4 is not random and that gluon
field behaves in this sense as a massless field giving rise to long range
interactions. The approximate canonical invariance of the Maxwell
phase, which corresponds to the exact canonical gauge invariance of
the configuration space geometry, is realized as approximately local
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U(1) transformations which become constant color rotations below a
cutoff scale identifiable as the size of space-time sheet carrying color
charge.

3. The fact that the classical color field is proportional to a color Hamil-
tonian and Kähler field implies that the direction of the gluon field in
the color algebra is random above the cutoff length scale so that color
cannot propagate in length scales longer than the cutoff scale. Since
color gauge currents are conserved for CP2 type extremals representing
wormhole contacts, color gauge flux is conserved in wormhole contacts
which are therefore color neutral as particles so that colored variant of
Higgs mechanism is not possible. The finite range of color interaction
therefore leaves only the possibility that the net color charge of the el-
ementary particles topologically condensed at the hadronic space-time
sheet vanishes.

5.2 Hadrons as color magnetic/electric flux tubes

In this model quarks and gluons correspond to small M4 type surfaces con-
taining topologically condensed CP2 type extremals and these surfaces are
in turn condensed on a larger hadronic M4 type surface. Valence quarks
(at least) are connected by color electric or magnetic flux tubes (join along
boundaries bonds) to form color singlets.

At elementary particle level, topological condensation means the conden-
sation of the CP2 type extremals around M4 type surfaces. The condensed
CP2 type extremals perform zitterbewegung with a velocity of light although
cm is at rest. The 3-space surrounding the condensed elementary particle
has a finite size of the order of Compton radius (natural guess at this stage).
At length scales r << rc (rc denotes the Compton radius of the particle),
condensed particles look essentially like massless particles whereas at length
scales r >> rC they look like pieces of M4 condensed to the background and
moving with a velocity smaller than light velocity. CP2 type extremals can
be regarded as Kähler magnetic monopoles, whose magnetic flux runs in the
internal degrees of freedom so that no long range 1/r2 magnetic field is gen-
erated. The fact that elementary particles are in a well defined sense Kähler
magnetic monopoles supports criticality hypothesis: the strong Kähler cou-
pling phase for the electric charges must be identical with the weak cou-
pling phase for the magnetic monopoles and therefore Kähler action must
correspond to a fixed point of the coupling constant evolution (this does
not exclude the p-adic coupling constant evolution with respect to the zero
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modes of the Kähler metric).
The construction of the configuration space geometry and of quantum

TGD lead to the conclusion that the description of the non-perturbative
aspects of the color interaction must be based on the flux variables defined
by the induced Kähler form. These variables include as a special case the
generalized classical color fluxes. Since the low energy limit of TGD is
expected to be more or less equivalent with the standard model, one can ask
whether color confinement is signalled also by the divergence of the color
coupling strength at low energies. p-Adic length scale hypothesis makes it
possible to quantitative understand the confinement scale.

There are good reasons to expect that the quantum average space-time
associated with a hadron could be regarded as an orbit of a 3-surface ob-
tained by connecting the 3-surfaces (of size smaller than hadronic size) as-
sociated with the valence quarks with color electric flux tubes to get a color
singlet state. Color singletness results from the randomness of the direction
of the color field above hadronic length scales implying that the average
radial color gauge flux emanating from the hadron vanish. This structure in
turn has suffered a topological condensation on a larger hadronic 3-surface.
The cutting of one or more color electric flux tube leads automatically to
a generation of compensating color charges so that only color singlets can
be created in the decays of the hadron. Also the topological evaporation of
only color singlet objects is possible.

5.2.1 Color magnetic or electric flux tubes or both?

Both color magnetic and electric flux tubes have been used to model hadrons
in TGD framework as well as in QCD, and one might wonder which of
these options is the correct one. For absolute minimization of Kähler action
Kähler electric fields are favored so that color electric flux tubes would be in
a preferred position as models of hadron. For the more general variational
principle discussed in [E2] the absolute value of Kähler action for space-
time region with a definite sign of action density is either minimized or
maximized (these options define dual dynamics and are consistent with the
fact that 3-surfaces rather than 4-surfaces are fundamental dynamical ob-
jects). Therefore both Kähler magnetic and electric flux tubes are possible
so that both color electric and magnetic models can be said to be correct.

The simplest model for the color flux tube connecting two quarks is based
on the following picture.

1. The CP2 type extremals with quark quantum numbers are topolog-
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ically condensed at M4 type 3-surfaces with size smaller than the
hadronic size. These 2-surfaces are in turn condensed on the hadronic
3-surface. Quark like 3-surfaces are connected by join along bound-
aries contacts, which are color flux tubes connecting the boundaries
of the quark 3-surfaces. These color flux tubes are the counterparts of
the hadronic string.

2. The color magnetic/electric flux tube is a deformation of a vacuum
extremal of type M2 ×D2 (”spring”), where D2 is a disk orthogonal
to M2. This surface indeed looks like a tube of cross section D2. The
disk has an area of order 1/T , where T is hadronic string tension.

3. The quarks at the ends of the flux tube serve as sources of approxi-
mately constant Kähler magnetic/electric fields (giving rise to chromo-
electic fields of confining type), which generate the hadronic string ten-
sion. Since color field is proportional to Kähler field, also the Kähler
charge of quark and gluon is of order q ' 1. The proportionality of the
induced Kähler field and classical color field implies that hadrons can
be regarded as chromo-electric flux tubes. Also QCD [19, 17] affords
this kind of descriptions for color confinement.

5.2.2 A model for color electric flux tube

Consider now in a more detail the model for the Kähler electric flux tube
understood as a preferred extremal of the Kähler action. Since the actual
situation is rather complicated it is useful to consider a simplified situation
that is solution of the field equations with essentially constant Kähler electric
field in the axal direction inside a cylinder of M4.

The join along boundaries contact (color electric flux tube) corresponds
to a surface of representable as a map from M4 = M2×D2 to the homolog-
ically nontrivial geodesic sphere of type II. Here D2 is a disk corresponding
to the transversal section of the color flux tube and has size not much smaller
than a typical hadronic length. One expects the Kähler action to be lowered
by the generation of the Kähler electric fields. Field equations for the small
deformations reduce in the lowest order to free Maxwell equations

DβJαβ = 0 . (6)

Topologically condensed valence quarks at the ends of the flux tube serve as
sources for the Kähler electric field.
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The solution ansatz describing a constant Kähler electric field is obtained
as a map from M4 = M2 ×D2 to the geodesic sphere of type II:

cos(Θ) = u(z) ,

Φ = ωt . (7)

The interesting components of the induced metric and induced Kähler form
are given by the expressions

gtt = 1− R2ω2

4
(1− u2) ,

gzz = −1− R2

4
u2

,z

(1− u2)
,

Jtz =
u,zω

4
. (8)

Field equations are obtained from the conservation of four-momentum and
the conservation condition for the z-component of momentum gives

u2
,z(g

3
zzgtt)−1/2 =

E

ω2
, (9)

where E can be interpreted as the constant field strength.
The lowest order solution is obtained by approximating the induced met-

ric with a flat metric so that one has

Θ = arccos(
Ez

ω
) . (10)

The solution obtained is well defined only for the values of z having abso-
lute value smaller that 2π/E and the gzz component of the induced metric
becomes infinite at the critical values of z. One might think that the ap-
pearance of the singularity is an artefact of the approximation used but this
is not the case. The closer examination of the field equations shows that the
singularity is unavoidable and results from the compactness of CP2 (vec-
tor potential is proportional to u = cos(Θ)) and that one cannot continue
the solution in any manner for larger values of z. The nice thing is that
boundary conditions are satisfied due to the singularity of the metric in the
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direction of the Kähler electric field. The result implies that the length of
the string, and therefore the size of the hadron, is of order

L ∼ 2πω

E
.

The hadronic string tension is generated dynamically. One can obtain
an estimate for the string tension by noticing that the situation is to a good
approximation one-dimensional. This means that the Kähler electric field
of the point charge is constant. Since the Kähler charges of quarks serve
as sources of the Kähler field the order of magnitude for the Kähler electric
field is given from Gauss theorem

E =
q

S
. (11)

where q ' 1 is the Kähler charge of quark and S is the transverse area of the
string. The order of magnitude estimate q ' 1 follows from the requirement
that the color charges for quarks have this order of magnitude and from the
fact that classical gluon field is proportional to the Kähler field. Hadronic
string tension is obtained by integrating the energy momentum density over
the transversal degrees of freedom

T ' 1
8παK

∫
E2dS ' 1

8παK

q2

S
. (12)

This implies that the transversal size of the hadronic string is of the order of
S ' 1/GeV 2. For ground state hadrons the length of the string is therefore
of same order as the transversal size of the string. Despite this, hadrons are
string like objects in a well defined sense: their topology is D1 × S2 instead
of D1 ×D2.

As already found, the imbedding of the constant Kähler electric electric
field associated with the flux tube becomes singular for values z = ±2πω/E
of the coordinate variable z in the direction of E (ω is the frequency asso-
ciated with the solution). The study of the spherically symmetric extremal
revealed that the parameter ω has value of order 10−4mPl in long length
scales. For the hadronic space-time sheet ω must of the order ω ∼ 1/L,
where L is a typical hadronic length in order to get reasonable length for
the string like object.
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5.3 Color confinement and generation of macro-temporal quan-
tum coherence

How macroscopic quantum coherence is possible in macroscopic time scales?
This pressing problem of quantum consciousness theories involves both the
question what coherence and de-coherence really mean and what really hap-
pens in quantum jump, as well as the question how the de-coherence times
in living matter could be much longer than predicted by standard physics.
Color confinement is the pressing problem of particle physics apparently put
under the rug during last two decades. There might be a close connection
between these seemingly totally un-related puzzles as the following little
argument tends to show.

5.3.1 Classical argument: the time spent in color bound states is
very long

The TGD based solution to the problem how to achieve macro-temporal
quantum coherence relies on the new physics predicted by quantum TGD.
The decisive factor is the gigantic almost degeneracy of states due to the
fact that CP2 canonical transformations, which effectively act as U(1) gauge
transformations, are approximate symmetries of the Kähler action broken
only by the classical gravitation.

The argument goes as follows.

1. The increment of the psychological time in single quantum jump is
estimated to be about CP2 time, that is about 104 Planck times. Dur-
ing this time interval quantum coherence is destroyed in zero mode
degrees freedom representing macroscopic degrees of freedom as well
as in all degrees of freedom in which there is no bound state entan-
glement. This time interval is extremely brief as compared to the
actual de-coherence times, which standard quantum theory allows to
estimate.

2. The formation of bound states can save the situation since bound
state entanglement is not reduced during state preparation phase of
the quantum jump consisting of self measurements. The transforma-
tion of the zero modes (macroscopic classical degrees of freedom in
which localization occurs in each quantum jump) to quantum fluctu-
ating degrees of freedom, when join along boundaries bonds are formed
between two space-time sheets representing binding systems accompa-
nies the formation of bound states. The reason is that only over all
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center of mass zero modes remain zero modes. This means that the
generation of macroscopic quantum fluctuating degrees of freedom and
the formation of bound states accompany each other.

3. When bound state entanglement is generated, state function reduc-
tion and state preparation cease to occur in these degrees of freedom
and one has macro-temporal quantum coherence. The sequence of
quantum jumps effectively binds to a single quantum jump just like
elementary particles bind to form atom behaving effectively as sin-
gle elementary particle. The lifetime of the bound state defines the
de-coherence time.

4. This does not yet explain why the lifetimes of the bound states, or
more precisely, why the time spent in bound states, is much longer
than predicted by the standard physics. New physics is required for
this, and spin glass degeneracy provides it. What happens is following.
When a bound state is formed, the space-time sheets representing
the free particles are connected by join along boundaries bonds. By
quantum spin glass degeneracy the number of bound states is huge as
compared to the number of free states, since there is extremely large
number of join along boundaries bond configurations and differing only
by the classical gravitational energy. Accordingly, the time spent in
bound states, and thus also de-coherence time, is much longer than
that predicted by standard physics.

How could one understand color confinement in this picture? The idea
is simple: when quarks form color bound states, they are connected by color
flux tubes (this is the aspect of confinement which goes outside QCD). Also
color flux tubes possess huge spin glass degeneracy. Free quark states do not
possess this degeneracy since join along boundaries bonds are absent. Thus
the time spent in free states in which color flux tubes are absent is negligible
to the time time spent in color bound states so that the states consisting of
free quarks are unobservable. If this picture is correct, the divergence of the
color coupling strength in confinement length scale reflects mathematically
the fact that number of bound states is overwhelmingly large as compared
that for the free states.

5.3.2 Color confinement from unitarity and spin glass degeneracy

A more precise phrasing of the idea about the connection between spin
glass degeneracy and color confinement relies on unitarity conditions and
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the assumptions TMN ' T and TMr ' Tr. Here capital subscripts refer to
degenerate hadronic states and small letter subscripts to free many-quark
states. In this idealization hadronic degenerate states are stable against
decay to free many-quark states with only single exception. The exceptional
state should act as a doorway making possible the transition to quark-gluon
plasma phase.

The S-matrix can be written as sum of unit matrix and reaction matrix
T : S = 1 + iT .

1. The unitarity conditions SS† = 1 read in terms of T-matrix as

i(T − T †) = TT † . (13)

For diagonal elements one has

2× Im(Tmm) =
∑
r

|Tmr|2 ≥ 0 . (14)

What is essential that the right hand side is non-negative and closely
related to the total rate of transitions. If this rate is high also the
imaginary part at the left hand side of the equation is large and there-
fore also the rate for the diagonal transition. For instance, in the case
of low energy strong interactions this implies that the total reaction
rates are high but transitions occur mostly in the forward direction.
In this case the mere large number of final many-hadron states implies
that most transitions occur in the forward direction.

In the recent case one must consider both free many quark states and
their bound states. Let us use capitals M, N as labels for bound states
and small letters m,n as labels for free states.

2. The diagonal unitarity conditions can be written for both of these
states as

2Im(Tmm) =
∑
r

|Tmr|2 +
∑

R

|TmR|2 ≥ 0 ,

2Im(TMM ) =
∑

R

|TMR|2 +
∑
r

|TMr|2 ≥ 0 . (15)
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In both cases there is a large number of the degenerate states involved
at the right hand side so that one expects that the right hand side
has a large value. For bound states the number of degenerate states is
much higher due to the additional degeneracy brought in by the join
along boundaries bonds (color flux tubes). Thus the lifetime and de-
coherence time should be considerably longer than expected on basis
of standard physics.

3. For the non-diagonal transitions from bound states to free states one
has

i(TMm − TmM ) =
∑
r

TMrTmr +
∑

R

TMRTmR . (16)

The right hand side is not positive definite and since a large number of
amplitudes between widely different free and bound states of quarks
are involved, one expects that a destructive interference occurs. This
is consistent with a small value of the non-diagonal amplitudes TMm

and with the long lifetime of bound states.

4. What happens for non-diagonal transitions between degenerate states?
The unitarity conditions read as

i(Tmn − Tnm) =
∑
r

TmrTnr +
∑
r

TmRTnR ,

i(TMN − TNM ) =
∑

R

TMRTNR +
∑
r

TMrTNr . (17)

The right hand side is not anymore positive definite and there is a very
large number of summands present. Hence a destructive interference
could occur and the amplitude would be very strongly restricted in
the forward direction. This need not however be true in the case of
degenerate states since they are expected to be very similar to each
other.

5. One can indeed play with the idealization that the transition ampli-
tudes between degenerate states are identical TMN = T and that the
amplitudes TMr are independent of M and given by TMr = Tr.

In this case T-matrix would have the form T = t × X, where X is
a matrix for which all elements are equal to one. t can be written

56



as |t|exp(iφ). T -matrix is maximally degenerate and the diagonalized
form TD of T-matrix has only a single non-vanishing element equal to
Nt, N the number of degenerate states. t must satisfy the unitarity
condition |t| = 2×sin(φ)/N . S-matrix would reduce to an almost unit
matrix for the diagonalized bound states.

What about the stability of the bound states in this case? The decay
amplitudes for bound states corresponding to the vanishing eigen val-
ues of T are given by TD(M, r) =

∑
cMTMr =

∑
M cM×Tr = 0 by the

orthogonality of these states with the state with a non-vanishing eigen
value. Thus the lifetimes of all bound states expect the one with the
non-vanishing eigen value of T are infinitely long in this idealization.

6 Is it possible to understand coupling constant
evolution at space-time level?

It is not yet possible to deduce the length scale evolution gauge coupling
constants from Quantum TGD proper. Quantum classical correspondence
however encourages the hope that it might be possible to achieve some un-
derstanding of the coupling constant evolution by using the classical theory.

This turns out to be the case and the earlier speculative picture about
gauge coupling constants associated with a given space-time sheet as RG
invariants finds support. It remains an open question whether gravitational
coupling constant is RG invariant inside give space-time sheet. The discrete
p-adic coupling constant evolution replacing in TGD framework the ordinary
RG evolution allows also formulation at space-time level as also does the
evolution of h̄ associated with the phase resolution.

6.1 Overview

6.1.1 The evolution of gauge couplings at single space-time sheet

The renormalization group equations of gauge coupling constants gi follow
from the following idea. The basic observation is that gauge currents have
vanishing covariant divergences whereas ordinary divergence does not vanish
except in the Abelian case. The classical gauge currents are however pro-
portional to 1/g2

i and if g2
i is allowed to depend on the space-time point, the

divergences of currents can be made vanishing and the resulting flow equa-
tions are essentially renormalization group equations. The physical motiva-
tion for the hypothesis is that gauge charges are assumed to be conserved in
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perturbative QFT. The space-time dependence of coupling constants takes
care of the conservation of charges.

A surprisingly detailed view about RG evolution emerges.

1. The UV fixed points of RG evolution correspond to CP2 type extremals
(elementary particles).

2. The Abelianity of the induced Kähler field means that Kähler coupling
strength is RG invariant which has indeed been the basic postulate of
quantum TGD. The only possible interpretation is that the coupling
constant evolution in sense of QFT:s corresponds to the discrete p-adic
coupling constant evolution.

3. IR fixed points correspond to space-time sheets with a 2-dimensional
CP2 projection for which the induced gauge fields are Abelian so that
covariant divergence reduces to ordinary divergence. Examples are
cosmic strings (, which could be also seen as UV fixed points), vac-
uum extremals, solutions of a sub-theory defined by M4 × S2, S2 a
homologically non-trivial geodesic sphere, and ”massless extremals”.

4. At the light-like boundaries of the space-time sheet gauge couplings are
predicted to be constant by conformal invariance and by effective two-
dimensionality implying Abelianity: note that the 4-dimensionality of
the space-time surface is absolutely essential here.

5. In fact, all known extremals of Kähler action correspond to RG fixed
points since gauge currents are light-like so that coupling constants are
constant at a given space-time sheet. This is consistent with the earlier
hypothesis that gauge couplings are renormalization group invariants
and coupling constant evolution reduces to a discrete p-adic evolution.
As a consequence also Weinberg angle, being determined by a ratio
of SU(2) and U(1) couplings, is predicted to be RG invariant. A
natural condition fixing its value would be the requirement that the
net vacuum em charge of the space-time sheet vanishes. This would
state that em charge is not screened like weak charges.

6. When the flow determined by the gauge current is not integrable in the
sense that flow lines are identifiable as coordinate curves, the situation
changes. If gauge currents are divergenceless for all solutions of field
equations, one can assume that gauge couplings are constant at a given
space-time sheet and thus continuous also in this case. Otherwise a
natural guess is that the coupling constants obtained by integrating
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the renormalization group equations are continuous in the relevant p-
adic topology below the p-adic length scale. Thus the effective p-adic
topology would emerge directly from the hydrodynamics defined by
gauge currents.

6.1.2 RG evolution of gravitational constant at single space-time
sheet

Similar considerations apply in the case of gravitational and cosmological
constants.

1. In this case the conservation of gravitational mass determines the RG
equation (gravitational energy and momentum are not conserved in
general).

2. The assumption that coupling cosmological Λ constant is proportional
to 1/L2

p (Lp denotes the relevant p-adic length scale) explains the
mysterious smallness of the cosmological constant and leads to a RG
equation which is of the same form as in the case of gauge couplings.

3. Asymptotic cosmologies for which gravitational four momentum is con-
served correspond to the fixed points of coupling constant evolution
now but there are much more general solutions satisfying the constraint
that gravitational mass is conserved.

4. It seems that gravitational constant cannot be RG invariant in the
general case and that effective p-adicity can be avoided only by a
smoothing out procedure replacing the mass current with its average
over a four-volume 4-volume of size of order p-adic length scale.

6.1.3 p-Adic evolution of gauge couplings

If RG invariance at given space-time sheet holds true, the question arises
whether it is possible to understand p-adic coupling constant evolution at
space-time level.

1. Simple considerations lead to the idea that M4 scalings of the intersec-
tions of 3-surfaces defined by the intersections of space-time surfaces
with light-cone boundary induce transformations of space-time sur-
face identifiable as RG transformations. If sufficiently small they leave
gauge charges invariant: this seems to be the case for known extremals
which form scaling invariant families. When the scaling corresponds
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to a ratio p2/p1, p2 > p1, bifurcation would become possible replacing
p1-adic effective topology with p2-adic one.

2. Stability considerations determine whether p2-adic topology is actually
realized and could explain why primes near powers of 2 are favored.
The renormalization of coupling constant would be dictated by the
requirement that Qi/g2

i remains invariant.

6.1.4 p-Adic evolution in angular resolution and dynamical h̄

For a given p-adic topology algebraic extensions of p-adic numbers define
also a hierarchy ordered by the dimension of the extension and this hierarchy
naturally corresponds to an increasing angular resolution so that RG flow
would be associated also with it.

1. A characterization of angular scalings consistent with the identification
of h̄ as a characterizer of the topological condensation of 3-surface X3

to a larger 3-surface Y 3 is that angular scalings correspond to the
transformations Φ → rΦ, r = m/n in the case of X3 and Φ → Φ in
case of Y 3 so that X3 becomes analogous to an m-fold covering of Y 3.
Rational coverings could also correspond to m-fold scalings for X3 and
n-fold scalings for Y 3.

2. The formation of these stable multiple coverings could be seen as an
analog for a transition in chaos via a process in which a closed Bohr
orbit regarded as a particle itself becomes an orbit closing only after
m turns. TGD predicts a hierarchy of higher level zero energy states
representing S-matrix of lower level as entanglement coefficients. Par-
ticles identified as ”tracks” of particles at orbits closing after m turns
might serve as space-time correlates for this kind of states. There is a
direct connection with the fractional quantum numbers, anyon physics
and quantum groups.

3. The simplest generalization from the p-adic length scale evolution con-
sistent with the proposed role of Beraha numbers Bn = 4cos2(π/n) is
that bifurcations can occur for integer values of r=m and change the
value of h̄. The interpretation would be that single 2π rotation in δM4

+

corresponds to the angular resolution with respect to the angular co-
ordinate φ of space-time surface varying in the range (0, 2π) and is
given by ∆φ = 2π/m.
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4. For n = 3 corresponding to the minimal resolution of ∆φ = 2π/3
h̄ would be infinite. The evidence for a gigantic but finite value of
”gravitational” Planck constant [J6] would mean that the simplest
formula

1
h̄(n)

=
log(Bn)
log(4)

for h̄ fails for n = 3.

The first cure of the problem would be a replacement of the formula for
h̄(n) by a difference equation

1
h̄(n)

− 1
h̄(n− 1)

=
log(Bn)
log(4)

− log(Bn−1)
log(4)

having interpretation as RGE difference equation and allowing additive con-
stant in the expression of 1/h̄(n) and thus yielding finite value for h̄(3).

A more elegant resolution of the problem is that for a given n charac-
terizing von Neumann inclusion there is spectrum of values for h̄(r = n/m)
expressible in terms of Br = 4cos2(π/r) as

1
h̄(n/m)

=
log(Bn/m)

log(4)
such that m/n < 3 holds true. This would reflect the presence of an ad-
ditional degree of freedom related to the Jones inclusion. m could char-
acterize the scaling of Φ for X3 and n the scaling of Φ for Y 3. A simple
TGD inspired model for dark atoms and dark condensed matter [J6] predicts
h̄/h̄0 = 1/v0 ' 211. This would correspond to r ' .3077.

6.2 The evolution of gauge and gravitational couplings at
space-time level

The question is whether the RG evolution of all coupling constant parame-
ters could have interpretation as flows at space-time level. This seems to be
the case.

6.2.1 Renormalization group flow as a conservation of gauge cur-
rent in the interior of space-time sheet

The induced gauge potentials relate to the gauge potentials Ai of pertur-
bative gauge theory by the scaling gi → giAi. Hence the gauge currents
correspond to the scaled currents
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Jµ
i =

1
g2
i

× Jµ
i,0 ,

Jµ
i,0 = (DνF

µν)i
√

g . (18)

The simplest guess for the coupling constant evolution associated with g2
i

is that the covariant gauge current Ja
i is conserved in ordinary sense (its

is identically conserved in covariant sense). This gives meaning to the per-
turbative approach in which gauge charges are indeed conserved. Thus one
would have:

∂µJµ
i = 0 . (19)

or

Jµ
i,0∂µlog(g2

i ) = ∂µJµ
i,0 . (20)

Note that the non-constancy of the Weinberg angle gives an additional term
to the em current given by

1
2
Zµν

0 ∂νp . (21)

This equation can be solved along the flow lines of the gauge current.
When the flow is integrable:

Jµ
i,0 = φ∂µt ,

one obtains

dlog(g2
i )

dt
=

∂µJµ
i,0

φ
= ∇(log(φ)) · ∇t +∇2t . (22)

When this flow is not integrable coupling constants become discontinuous
functions with respect to the real topology but can be continuous or even
smooth with respect to some p-adic topology and the previous discussion
applies as such.

The ordinary divergence of the gauge current takes the role of beta func-
tion. RG evolution is trivial in the Abelian case since in this case ordinary

62



divergence vanishes identically. This implies that Kähler coupling strength is
indeed renormalization group invariant which has been the basic hypothesis
of quantum TGD.

The natural boundary conditions to the coupling constant evolution state
the vanishing of the normal components of the gauge currents at boundaries

Jn
i =

DβFnβ
i
√

g4

g2
i

= 0 . (23)

and guarantee that the flow approaches asymptotically the boundaries. These
conditions can become trivial if the four-metric at the boundary component
becomes singular (effectively 2-dimensional) so that DβFnβ

i can approach
to finite or even infinite value. This might happen in case of color gauge
coupling strength if it approaches infinity near the boundary. Otherwise the
conditions says nothing about coupling constants at the boundary.

6.2.2 Is the renormalization group evolution at the light-like bound-
aries trivial?

One can ask whether it is possible to define coupling constant evolution
also for the gauge fields induced at light-like boundary components. The
technical problems are caused by the vanishing of the determinant of the
induced metric and the non-existence of contravariant metric but it is quite
conceivable that the restriction to the 2-dimensional sections makes sense if
one defines a contravariant metric as the inverse of the induced metric in
the 2-D section.

Since CP2 projection is 2-dimensional, RG equations suggest that cou-
pling constants are constants on the 2-dimensional sections and that confor-
mal invariance in the light-like direction implies constancy over the entire
boundary component. Since boundary components are identifiable as parton
like objects, the result would look highly satisfactory.

If the right hand side of Eq. 22 vanishes at the boundary of space-time
surface g2

i approaches to a finite value. When the left hand side is finite and t
becomes infinite as boundary is approached g2

i increases without limit. This
happens for a finite value of t when the right hand side diverges. Classical
color gauge fields are proportional to HAJ , where HA are the Hamiltonians
of the color isometries and J denotes the induced Kähler form. The non-
triviality of renormalization group evolution is solely due to the presence
of Hamiltonians. QCD suggests that αs diverges at the outer boundary or
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that at least approaches to a very large value at the outer boundaries of the
hadronic 4-surface.

6.2.3 Fixed points of coupling constant evolution

Consider now the fixed points of the coupling constant evolution.

1. The first class of fixed points corresponds to CP2 type extremals. In
this case however also gauge currents vanish so that the RG equation
says nothing.

2. The second class of fixed points of the coupling constant evolution cor-
responds to space-time regions in which gauge fields become Abelian.
This is the case for all space-time surfaces with 2-dimensional CP2 pro-
jection: this includes vacuum extremals, massless extremals, solutions
for which CP2 projection corresponds to a homologically non-trivial
geodesic sphere, and cosmic strings. This supports the view that these
extremals correspond to asymptotic self-organization patterns.

6.2.4 Are all gauge couplings RG invariants within a given space-
time sheet

No extremals for which the gauge currents would have non-vanishing or-
dinary divergence are known at this moment (gauge currents are light-like
always). Therefore one cannot exclude the possibility that all gauge cou-
pling constants rather than only Kähler coupling strength are renormaliza-
tion group invariants in TGD framework, so that the hypothesis that RG
evolution reduces to a discrete p-adic coupling constant evolution would be
correct.

This implies that also Weinberg angle, being determined by the ratio of
SU(2) and U(1) couplings, is constant inside a given space-time sheet. Its
value in this case is determined most naturally by the requirement that the
net vacuum em charge of the space-time sheet vanishes.

The fixed point property as an implication of Abelianity is obviously
in conflict with the standard picture about gauge coupling evolution and
supports the view that this evolution corresponds to a discrete p-adic gauge
coupling evolution.

6.2.5 RG equation for gravitational coupling constant

In the case of gravitational coupling constant the renormalization group
equation must be formulated the current representing the contribution of
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Einstein tensor to the gravitational mass being defined by Einstein tensor
as

Gα =
1

16πG
×Gαβ∂βa

√
g , (24)

where a refers the proper time of future light cone (or possibly to some
other preferred time coordinate determined by dynamics). In the case of
cosmological constant the corresponding contribution is

gα =
Λ

16πG
× gαβ∂βa

√
g . (25)

A natural hypothesis is that the variation of G guarantees the conser-
vation of gravitational mass. This does not mean that gravitational energy
or four-momentum would be conserved or that conservation of gravitational
mass would hold true except at a given space-time sheet. One can also
assume that the two contributions to the gravitational mass are not inde-
pendent. This means that there is a constraint between cosmological and
gravitational constants. There are two options.

1. One has

Λ =
x

G
. (26)

where x is renormalization group invariant of no other length scales
are involved. The RG equation would in this case read as

(
Gα − 2x

G
gα

)
Dαlog(G) = Dα

(
Gα +

x

G
gα

)
. (27)

2. On the other hand, if p-adic length scale hypothesis is accepted, one
has

Λ =
x

L2
p

, (28)

where Lp is a p-adic length scale of order of cosmic time a: Lp ∼ a
[D5]. This would mean that Λ is RG invariant. This option resolves
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the mysterious smallness of the cosmological constant so that it is the
most plausible option in TGD framework.

The RG equations in this case is given by

(
Gα +

x

L2
p

gα

)
Dαlog(G) = Dα

(
Gα +

x

L2
p

gα

)
. (29)

and of the same general form as in the case of gauge couplings, which
also supports option b).

Vacuum extremals which correspond to asymptotic cosmologies with cos-
mological constant satisfying

Dα

(
Gα +

x

L2
p

gα

)
= 0 (30)

represent examples of the fixed points of the coupling constant evolution with
conserved gravitational four-momentum. Obviously much weaker conditions
guarantee fixed point property.

For Schwartschild metric having imbedding as a vacuum extremal Ein-
stein tensor vanishes so that the RG equations would say nothing about
G for option a). For Reissner-Nordstöm metric also having embedding as
a vacuum extremal Einstein tensor corresponds to the energy momentum
tensor of Abelian gauge field and the length scale evolution of G would be
non-trivial in both cases.

6.3 p-Adic coupling constant evolution

6.3.1 p-Adic coupling constant evolution associated with length
scale resolution at space-time level

If gauge couplings are indeed RG invariants inside a given space-time sheet,
gauge couplings must be regarded as being characterized by the p-adic prime
associated with the space-time sheet. The question is whether it is possible
to understand also the p-adic coupling constant evolution at space-time level.

A natural view about p-adic length scale evolution is as an existence
of a dynamical symmetry mapping the preferred extremal space-time sheet
of Kähler action characterized by a p-adic prime p1 to a space-time sheet
characterized by p-adic prime p2 > p1 sufficiently near to p1. The simplest
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guess is that the symmetry transformation corresponds to a scaling of M4

coordinates in the intersection X3 of the space-time surface with light-cone
boundary δM4

+ × CP2 by a scaling factor p2/p1, which in turn induces a
transformation of X4(X3), which in general does not reduce to M4 scaling
outside X3 since scalings are not symmetries of the Kähler action.

This transformation induces a change of the vacuum gauge charges:
Qi → Qi + ∆Qi, and the renormalization group evolution boils down to
the condition

Qi + ∆Qi

g2
i + ∆g2

i

=
Qi

g2
i

. (31)

The problem is that this transformation has a continuous variant so that
p-adic length scale evolution could reduce to continuous one.

A possible resolution of the problem is based on the observation that
the values of the gauge charges depend on the initial values of the time
derivatives of the imbedding space coordinates. RG invariance at space-
time level suggests that small scalings leave the gauge charge and thus also
coupling constant invariant. As a matter fact, this seems to be the case
for all known extremals since they form scaling invariant families. The
scalings by p2/p1 for some p2 > p1 would correspond to critical points in
which bi-furcations occur in the sense that two space-time surfaces X4(X3)
satisfying the minimization conditions for Kähler action and with different
gauge charges appear.

The new space-time surface emerging in the bifurcation would obey effec-
tive p2-adic topology in some length scale range instead of p1-adic topology.
Stability considerations would dictate whether p1 → p2 transition occurs
and could also explain why primes p ' 2k, k integer, are favored. This
kind of bifurcations or even multi-furcations are certainly possible by the
breaking of the classical determinism.

6.3.2 The space-time realization of the RG evolution associated
with the phase resolution

The algebraic extensions of a given p-adic number field define a hierarchy
ordered by the dimension of the extension assigned to the RG evolution with
respect to the phase resolution. The evolution of h̄ inducing evolutions of
other coupling constants have been assigned to this coupling constant evo-
lution and an explicit formula in terms of Beraha numbers Bn = 4cos2(π/n)
for the RG evolution has been proposed [C6, J6].
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In this case the simplest candidates for the geometric transformations of
space-time surface are rational scalings of the cyclic angular S2 coordinate
of δM4

+ = R+ × S2 given by Φ → rΦ, r = m/n replacing in the general
case the space-time sheet with its n-fold covering acting on X3 and inducing
a transformation of X4(X3). Single closed curve around origin in X4(X3)
would correspond to an m2π rotation in M4 and I have proposed that any-
onic systems with fractional spin and other charges could correspond to this
kind of space-time surfaces [E9, G2].

A more precise characterization consistent with the identification of h̄ as
a characterizer of the topological condensation of 3-surface X3 to a larger 3-
surface Y 3 is that angular scalings correspond to the transformations Φ →
rΦ, r = m/n in the case of X4 and Φ → Φ in case of Y 4 so that X2

becomes analogous to an m-fold covering of Y 3. Rational coverings could
also correspond to m-fold scalings for X4 and n-fold scalings for Y 3.

The formation of these stable multiple coverings could be seen as an
analog for a transition in chaos via a process in which a closed Bohr orbit
regarded as a particle itself becomes an orbit closing only after m turns.
TGD predicts a hierarchy of higher level zero energy states representing
S-matrix of lower level as entanglement coefficients. Particles identified as
”tracks” of particles at orbits closing after m turns [G2] would be natural
space-time correlates for this kind of states.

The simplest generalization from the p-adic length scale evolution con-
sistent with the proposed role of Beraha numbers is that bifurcations can
occur for integer values of r = m and change the value of h̄. The interpre-
tation would be that single 2π rotation in δM4

+ corresponds to the angular
resolution with respect to the angular coordinate φ of space-time surface
varying in the range (0, 2π) and is given by ∆φ = 2π/m. On the other
hand, the evidence for a gigantic but finite value of ”gravitational” Planck
constant [J6] suggests that large values of h̄ corresponding to 3 < n < 4 and
defining a ”generalized” Beraha number are possible. For n = 3 correspond-
ing to the minimal resolution of ∆φ = 2π/3 h̄ would be infinite. This would
allow to keep the formula for h̄(n) in its original form by replacing n with a
rational number. This would mean that also rational values of r correspond
to bifurcations in the range 3 < r < 4 at least. An open question is whether
the generalization of n to rational number somehow generalizes the notion
of index M : N = Bn of Jones inclusion.

If this picture and the explanation for the cosmological variation of the
fine structure constant characterizing ordinary matter based on the relative
variation of h̄ of order ∆h̄/h̄ ∼ 10−6 [D6] are both correct, ordinary con-
densed matter phase would correspond to 3-surfaces X3 condensed on larger
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surface Y 3 with m in the range 100-200.

6.4 About electro-weak coupling constant evolution

The classical space-time correlates for electro-weak coupling constant evo-
lution deserve a separate discussion.

6.4.1 How to determine the value of Weinberg angle for a given
space-time sheet?

The general picture about the massivation of electro-weak bosons and electro-
weak gauge bosons based on the notion of induced gauge field allows to de-
termined Weinberg angle from the condition that electromagnetic vacuum
charge for a given space-time sheet vanishes.

The basic idea is that electro-weak vacuum charge densities are gen-
erated and screen weak charges transforming 1/r Coulomb potentials to
exponentially screened ones. The massivation of fermions occurs by a dif-
ferent mechanism in TGD and they can be massive even in the case that
electro-weak bosons are massless.

In gauge theories the screening of weak charges occurs in differential
manner. In TGD framework RG invariance inside a given space-time sheet
and p-adic coupling constant evolution support the view that this screening
occurs in discrete manner in the sense that the weak fields would behave like
massless fields inside a given space-time sheet but the net weak charges of
the space-time sheets cause the screening of the weak charges and massiva-
tion in average sense. The masslessness of photons means that the vacuum
em charge for a given space-time sheet vanishes. This condition allows to
determine the value of Weinberg angle for a given space-time sheet.

6.4.2 Smoothed out position dependent Weinberg angle from the
vanishing of vacuum density of em charge

A practical variant about the condition determining Weinberg angle for a
given space-time sheet is obtained by a smoothing out procedure in which
the distribution of discrete values of Weinberg angle is replaced with a con-
tinuous distribution interpreted as a constant below the typical size scale of
space-time sheets involved.

The condition that the em charge density defined by the covariant diver-
gence of electro-weak current vanishes, gives a differential equation allowing
to solve for Weinberg angle. Using M4

+ proper time a as a preferred time co-
ordinate (identifiable as cosmic time and playing key role in the construction
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of configuration space geometry and quantum TGD [B2, B3])) this condi-
tion can be made general coordinate invariant. One can hope that with a
proper choice of boundary conditions (fixed actually the the minimization of
Kähler action) Weinberg angle can always have a physical value. Since gauge
current is defined as the covariant divergence of gauge field the condition
involves for D > 2 besides the ordinary divergence also a term proportional
to W+,νW

µν
− −W−,νW

µν
+ .

1. Simple special cases

For vacuum extremals ordinary em current vanishes for p = sin2(θW ) =
0. In this case the 2-dimensionality of CP2 projection guarantees that or-
dinary divergence equals to the covariant one. Hence p = 0 guarantees
trivially the vanishing of em charge density also now but there are also
other solutions.

For solutions with CP2 projection belong to a homologically non-trivial
geodesic sphere of CP2 the condition determining the Weinberg angle re-
duces to the vanishing of the divergence of pJ0i whereas the vanishing of γ
would imply a non-physical value of p.

2. General solution of the conditions

The explicit expressions for classical em and Z0 are given by

γ = 3J − pR03 , p ≡ sin2(θW ) ,

Z0 = 2R03 . (32)

CP2 Kähler form J and spinor curvature component R03 are given in terms
of vierbein by

J = 2 [e1 ∧ e2 + e0 ∧ e3] ,

R03 = 2e1 ∧ e2 + 4e0 ∧ e3 . (33)

The general form of the condition determining Weinberg angle is given
by

EZ · ∇p + (∇ · EZ)p = F ,

F = −6∇ · EK − 2F1 . (34)

Here EZ corresponds R03 term in em field and EK to Kähler electric field
and F1 corresponds to the W+,νW

µν
− −W−,νW

µν
+ term. It is assumed that

70



1/e2 factor multiplying em current is constant. If this is not the case, the
replacement F → F +2Eem∇2log(e2) must be made on the right hand side.

These differential equations are of the same form as renormalization
group equations and continuous solutions exist if one can introduce a coor-
dinate system in which the flow lines of Kähler electric field correspond to
one coordinate. This is possible if Z0 electric field is of the form

EZ = φdt . (35)

This implies the integrability condition dEZ = dφ ∧ dt implying

dEZ ∧ EZ = 0 . (36)

By introducing space-time coordinates (x, t) (t does not refer to time
now) the equation can be written in the form

dp

dt
+
∇ · EZ

φ
p =

F

φ
. (37)

solutions can be written as

p = p0 + p1 ,

dp0

dt
+
∇ · EZ

φ
p0 = 0 ,

dp1

dt
+
∇ · EZ

φ
p1 =

F

φ
. (38)

p0 and p1 are given by

p0(x, t) = p00(x) + exp

(
−

∫ t

0
du
∇ · EZ(x, u)

φ

)
,

p1(x, t) = p0(x, t)
∫ t

0
du

F

p0φ
(x, u) . (39)

Whether p00(x) = constant is consistent with field equations is an open
question.

3. What happens when the integrability condition fails?
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The failure of the integrability condition has interpretation as failure of
the smoothing out procedure. A natural guess is that in this case the cou-
pling constant is continuous or perhaps even smooth with respect to p-adic
topology below the p-adic length scale for some prime p. Non-integrability
would provide a rather satisfactory differential-topological understanding of
how effective p-adic topology emerges.

3. Questions related to the physical interpretation

This picture raises several interesting questions related to the physical
interpretation.

1. What is the TGD counterpart of Higgs=0 phase? The dimension of
CP2 projection is is analogous to temperature and one can argue that
massivation is analogous to a loss of correlations due to the increase
of D bringing in additional degrees of freedom. Massless extremals
having D = 2 all induced gauge fields are massless so that they are
excellent candidates for Higgs=0 phase. Does this mean that already
D = 3 space-time sheets correspond to a massive phase?

2. Why electro-weak length scale corresponding to Mersenne prime M89

is preferred [F3]? Are there also other length scales in which electro-
weak massivation occurs and thus scaled copies of electro-weak bosons?
These questions reduce to the questions about the stability of the
proposed bifurcations.

3. The basic problem of TGD based model of condensed matter is to
explain why classical long range gauge fields do not give rise to large
parity breaking effects in atomic length scale but do so in cell length
length scale at least in the case of living matter (bio-catalysis). The
proposal has been that particles feed electro-weak and em gauge fluxes
to different space-time sheets. Could it be that blocks of bio-matter
with size larger than cell the space-time sheets at which em and weak
charges are feeded can be in Higgs=0 phase whereas for smaller blocks
screening occurs already at quark and lepton level.

This would be consistent with the fact that the dimension D of CP2

projection tends to decrease with the size of the space-time sheet: the
larger the space-time sheet, the nearer it is to a vacuum extremal.
Robertson-Walker cosmologies are exact vacuum extremals carrying
however non-vanishing gravitational 4-momentum densities. By pre-
vious argument W and Z masses are identical in this kind of phase
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if the vanishing of vacuum em field is used to fix p. The weaken-
ing of correlations caused by classical non-determinism might imply
massivation.

4. Do long ranged non-screened vacuum Z0 and W gauge fields have some
quantum counterparts as quantum-classical correspondence would sug-
gest? Does dark matter identified as a phase with large value of h̄ [J6]
correspond to a phase in which electro-weak symmetry breaking is
absent in the bosonic sector?

This phase would differ from the ordinary one in that the weak charges
of leptons and quarks are not screened in electro-weak length scale but
that their masses are very nearly the same as in Higgs=0 phase since
the dominant contribution to the masses of elementary fermions is not
given by a coupling to Higgs type particle but determined by p-adic
thermodynamics [F2, F3].

Does bio-matter involve this kind of phase at larger space-time sheets
as chirality selection suggests [F9]? Does this phase of condensed mat-
ter emerge only above length scale defined by the cell size or cell mem-
brane thickness?

7 Model for topological evaporation

7.1 General ideas

Topological condensation and evaporation are effects, which clearly differ-
entiate between TGD and GRT. It has been already found that the absolute
(with respect to M4 time) velocity of the light propagation in the condensed
phase differs from the propagation velocity in the vapor phase. Is this effect
indeed observable? In order to answer this kind of question, one must have
some model for the topological condensation and evaporation. This model
should give a criterion for the stability of the condensate and give estimates
for the condensation and evaporation lengths of a particle. There is no need
to emphasize that the construction of this kind of model is guesswork at this
stage, when even quantitative grasp on the orders of magnitude is lacking.

In principle, Kähler function provides a fundamental classical descrip-
tion for the condensation and evaporation phenomena. To determine con-
densation length of a given particle in a given background system one
should determine the classical space-time associated with a state consist-
ing of disjoint union of particle like 3-surface plus a connected 3-surface
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describing back ground system at m0 = 0 hyperplane of M4. The con-
densation length could be estimated from the time needed for the process
particle ∪ background → particle#background to occur. In a similar man-
ner, evaporation length could be estimated. Quantum states are actually
quantum superpositions of 3-surfaces and one must use the concept of quan-
tum average effective space-time defined as a maximum of the Kähler func-
tion with respect to nonzero-modes as a function of zero modes. The de-
pendence of the quantum state on zero modes determines which quantum
average effective space-times contribute to the appropriate S-matrix matrix
elements. One cannot exclude the possibility that in this case vapor phase
particles are absent.

In practice this kind of description is not useful at this stage. One can
however construct general arguments.

1. The most general argument is based on the ”Yin-Yang” principle. If
the evaporated particle leaves its Kähler charge in the condensate,
Kähler action is not changed drastically in the process. For massless
particles action is expected to vanish in both phases (by conformal
invariance): in fact ”plane wave type massless extremals” with van-
ishing action are natural candidates for the external space-time of the
condensed massless particle. The action argument thus suggests that
massless particles and massive relativistic particles in principle can
propagate both in the condensed and non-condensed modes.

2. Topological condensate is expected to have a hierarchical structure
with infinite number of condensate levels characterized by length scales
< L(n) < L(n + 1) < .., L(n) giving roughly the lower bound for the
size of the particle like 3-surface of level n. One must distinguish
between the primary and secondary condensations: in the primary
condensation at level n(prim) the originally massless vapor phase par-
ticle (CP2 type extremal) becomes massive. For example, hadrons are
expected to be massive in the vapor phase since the topological con-
densation of quarks and gluons around the hadronic 3-surface makes
quarks and thus also vapor phase hadrons massive (see Fig. 22.1). In
further condensations only the particle mass changes and this change
can be regarded as mass renormalization: this change will be referred
to as condensation energy Ec in the sequel. The concept of the conden-
sation energy makes sense for the massive particles only. This suggests
that a direct evaporation for particles, which are massless in both vapor
and condensate phases, is not possible. Photon or graviton can how-
ever be emitted in the vapor/condensed phase and the emission vertex
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for the condensed/vapor phase photon is proportional to cos(θ)/sin(θ)
respectively, where the angle parameter θ is an unknown parameter at
this stage: in principle θ also depends on whether the emitting charge
in the vapor phase/condensate. For instance, the condensation and
evaporation of a photon is possible via Compton scattering, whereas
for the electron spontaneous condensation is possible via single pho-
ton emission. When gravitational interaction is taken into account
the situation changes: for instance, photon can condense by emitting
collinear gravitons.

3. The failure of the imbeddability of the strong gauge fields created by
the colliding particles is a natural candidate for the microscopic mech-
anism causing topological evaporation besides particle emission. Also
energetic considerations suggest that evaporation mainly occurs in the
collisions between particles. For a massive particle evaporation from
the primary condensate level means that particle becomes massless
so that a large momentum transfer must take place in the collision.
Momentum transfer must be mediated by the gauge fields of the con-
densate and high energy collisions of the particles indeed create large
gauge fields since the minimum distance in the collision decreases with
the energy of the colliding particles. Furthermore, if the energy of the
colliding massive particle is relativistic in the cm frame, the momen-
tum transfer becomes small (|∆p̄| < m2/2E) so that the evaporation
is expected to take place more easily. Notice also that relativistic col-
lisions create rapidly varying gauge fields making a topology change
more probable.

4. The fundamental step in the condensation/evaporation process is the
splitting of the # contact(s) and this process factorizes from the ordi-
nary Yang Mills interactions. This suggests that one can model evap-
oration and condensation from the primary condensation level of the
elementary particle using standard gauge field theory by introducing
essentially one additional vertex. The vertex describes the evaporation
of a massive particle or the reversal of this process and is characterized
by some amplitude A, which is expected to be highly independent on
the properties of the particle since the basic process is the splitting
of the # contact(s). For fermions the amplitude A can be written
as AF = εF mF , where mF is fermion mass and for bosons one has
AB = εBm2

B, where εF and εB are dimensionless quantities: clearly
|εi|2, i = F, B can be regarded as the probability for evaporation or
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condensation. It must be emphasized that this description applies to
the evaporation of the CP2 type extremal from the primary conden-
sate level. The evaporation from the secondary condensation level is
expected to involve the splitting of very many # contacts and therefore
this process is expected to be highly improbable.

5. The assumption that quantum gauge charges are identical with classi-
cal gauge fluxes combined with the conservation of gauge flux implies
that vapor phase particles have vanishing gauge charges and perhaps
also vanishing gravitational mass (at least in length scales sufficiently
above CP2 length scale) and respond to the gauge and gravitational
interactions only via dipole and higher multiple moments plus purely
geometric interactions. The identification of gauge charges as classical
gauge fluxes need not be sensible in CP2 length scale and the evapora-
tion of elementary particles from the primary condensation level might
be possible without leaving the gauge charges to the condensate. The
evaporation of gauge charged particle as a neutral particle requires that
the gauge charges of the vapor phase particle are screened somehow,
perhaps by purely classical vacuum charge densities made possible by
the induced gauge field concept. The rates for the evaporation and
condensation are assumed to be proportional to the reaction rates as-
sociated with the ordinary gauge interactions. From this it is clear
that condensation via interactions takes place with a considerable rate
at relativistic energies only. If the neutralizing charge distribution of
the vapor phase particles is located near the outer boundaries of the
vapor phase 3-surface, vapor phase particles should behave as charged
particles at very high energies as a simple model of the charge dis-
tribution as point charge surrounded by a spherical cell of opposite
charge demonstrates. A new process is a spontaneous condensation
via a photon emission if the condensation energy Ec is positive.

6. Since several secondary condensations are in principle possible, the
evaporation to the vapor phase takes place with a considerable prob-
ability only at the relativistic energies in accordance with the gen-
eral features of the particle massivation and involves several steps.
When the temperature of the condensate is larger than the mass of
the intermediate bosons, the topological evaporation of the interme-
diate gauge bosons becomes probable and since intermediate bosons
are massless in the vapor phase, the interactions mediated by them
become long ranged. That the evaporation of the intermediate gauge
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bosons becomes probable at the temperatures larger than the interme-
diate boson mass, is suggested by the fact that the average distance
(d ' 1/T ) between between the particles becomes smaller than the
range of the weak interactions with the consequence that the action
associated with single particle becomes so small that the evaporation
doesn’t cost much action.

7. One can imagine an additional evaporation mechanism: a condensed
particle moving in the condensate enters to the boundary of the space-
time sheet and gets evaporated! This evaporation mechanism, if at
work, could in principle make possible also the evaporation from the
secondary condensation levels and even the evaporation of macroscopic
objects. Note however that Z0 and electromagnetic gauge fluxes of the
elementary particles are feeded on different space-time sheets and this
mechanism need not lead to a total evaporation. It might well be
that strong gauge fields near the boundary of the 3-surface make it
impossible for particle to enter to the boundary or that 3-surface itself
deforms so that the condensed particle does not ’fall overboard’. Also
the # throats themselves might create the force making the evapora-
tion impossible.

These arguments motivate the use of differential cross sections for the
ordinary interactions as order of magnitude estimates for the topological
evaporation and condensation by gauge interactions. The simplest mecha-
nism for the evaporation of photons is provided by the Compton scattering
with charged particles: from the behavior of the cross section (σ ∝ α2/m2)
it follows that electrons give a dominant contribution to the evaporation of
the photons. Compton scattering from photons and the scattering of the
charged particles from each other provide the simplest evaporation mecha-
nisms for charged particles: the cross section for charged particle scattering
behaves at relativistic energies as σ ∝ α2/E2 as the function of center of
mass energy.

The following topics will be considered in the sequel.

1. Order of magnitude estimates for the degree of evaporation of photons
and electrons will be derived.

2. The possibility that the model could explain the anomaly in the energy
distribution of the high energy cosmic electrons [32] is considered.

3. TGD predicts that the light velocities for the propagation in the con-
densate and vapor phase are different and the possible indications of
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Figure 6: Basic properties of vapor phase and condensate

this phenomenon are discussed.

7.2 Estimates for the evaporation of photons and electrons

We shall consider next some concrete estimates for the evaporation and
condensation rates of photons and electrons in the ordinary matter.

7.2.1 Evaporation of photons

For photons the dominating condensation and evaporation mechanism is
Compton scattering on electrons. The evaporation length for Compton scat-
tering of topologically condensed photons with free electrons in the conden-
sate is in the cm frame given by the expression

1
LC

#

∼ Pfne
2
3

α24π

m2
e

,

Pf = sin2(θ) , (40)

where ne denotes the density of free electrons an Pf = sin2(θ) is the parame-
ter describing the probability for a photon to be emitted in the vapor phase:
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Figure 7: Mechanisms for a) topological condensation and evaporation: con-
densation and evaporation. b) formation of join along boundaries bonds.

by the time reversal invariance Pf equals to the corresponding probability
P# for the condensation. The dominating contribution to the evaporation
length comes from the Compton scattering on free electrons since the cross
section for the electronic Compton scattering is about 106 times larger than
for protonic Compton scattering.

Compton scattering cross section diverges at the limit of a vanishing
charged particle mass, which is taken as indication that charged particles are
necessarily massive in the topologically stable condensate in accordance with
the idea that topological condensation corresponds to particle massivation.
The finiteness requirement suggests also that gauge interactions between the
massless particles of the vapor phase must be effectively absent in accordance
with the idea that cross sections are determined by the geometric sizes of
the particles: note that the gauge interactions between particles of the vapor
phase and condensate are not excluded by this argument.

The rate of Compton condensation and evaporation is very small if the
average photon energy is much smaller than the average electron energy:
the reason is that the the scattering of electron is in this case small angle
scattering (1 − cosθe) < 〈Eγ〉/〈Ee〉 and therefore the average cross section
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for scattering is small. The decrease of the cross section can be understood
also as resulting from the presence of a time dilation factor in the scattering
rate. For low energy photons in non-ionized neutral matter the rates of
condensation and evaporation are also very small. If the temperatures of
the photon and electron distributions are same and matter is highly ionized
or photons have a sufficiently high energy (so that electrons can be regarded
as free charges) the ratio of the photon densities in the vapor phase and
condensate equals to one in the kinetic equilibrium.

Some concrete order of magnitude estimates are illustrative.

1. In bulk matter (np ' 1031/m3 ) the values of the condensation and
evaporation lengths are of the order Lf ' L# ≥ (1/PfI)·10−4 meters,
where I is the degree of ionization. It has been assumed that only free
electrons contribute to Compton scattering and the cross section for
cm scattering is used as upper bound for the scattering cross section.

2. In the gas densities typical to the lower atmosphere the condensation
and evaporation lengths are of the order of Lf ≥ (1/PfI) 10−1 meters,
where I is the degree of ionization.

7.2.2 Evaporation of electrons

The following considerations make sense only if one assumes that the evapo-
ration of electron as a neutral particle is possible. This requires that charge
of vapor phase electron is screened somehow, perhaps by purely classical vac-
uum charge density made possible by the induced gauge field concept. For
non-relativistic vapor phase electrons characterized by magnetic moment the
condensation rate is small for obvious reasons. For relativistic electrons the
dominating evaporation and condensation mechanisms are Compton scat-
tering from photons and the scattering of electrons on charged particles. It
should be noticed that the cross section for electron-electron scattering re-
mains finite since the masses of electron in the vapor phase and condensate
are different so that one avoids the singularity of the scattering amplitude in
the forward direction. The cross section for the scattering of ultra-relativistic
charged particles behaves roughly as [33]

σ ' α2

E2
, (41)

where E denotes the energy in center of mass frame.
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The evaporation length associated with Compton scattering from the
black body radiation has the following order of magnitude

1
LC

f

∼ nγσcompton ' T 3α2

m2
e

|εF |2 . (42)

where εF is the amplitude for the splitting of # contact. Since electrons are
relativistic the condensation rate by Compton scattering is very small unless
photons are in a temperature of the order of average electron energy. The
contribution of electron electron scattering on condensation rate is larger
since the differential cross section for the ordinary charged particle scattering
is peaked in the forward direction

dσ

dΩ
∝ 1

k4
∝ 1
|p̄e|4sin4(θ/2)

. (43)

In the present case the difference of the electron masses in the vapor phase
and condensed phase cancels the singularity in the forward direction and
one has dσ/dΩ ∝ 1/m4

e in the forward direction.
There exist some indications about the evaporation of electrons.

1. The scattering of relativistic conduction electrons from other electrons
in sufficiently strong electric current is a possible evaporation mech-
anism for electrons. There are some indications [26] that under the
experimental conditions used about 1 per cent of the electric signal
propagates with a velocity about twice the velocity of light (identified
as the velocity of the light in condensate). The evaporation of the rel-
ativistic conduction electrons to massless particles of the vapor phase
might be a possible explanation for this effect.

2. Plasma phase is particularly interesting as far as the evaporation of
electrons is considered. The evaporation rate for low energy photons is
proportional to the degree of ionization so that in the plasma phase the
evaporation probability for both low energy and high energy photons
and electrons is large (it should be noticed that below plasma frequency
(typically in radio frequency range) the propagation of light is not
possible in plasma [34]).

A possible indication about the occurrence of the electron evaporation
might be the so called ”pump out” phenomenon [35] encountered in fusion
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experiments. The experimental situation is roughly the following [35]. An
electron current in a volume with, say a shape of ”eight”, is created in order
to create a plasma using an external electric potential. The electron density
is typically about 1021 per cubic meter. Current ionizes He2 gas. Gradually
a complete ionization is reached. The problems are the following:

1. The ionization takes place too slowly as compared to the ionization
rate predicted by the theoretical models.

2. Electrons disappear from plasma and therefore also plasma disappears.
The number of the runaway electrons is larger than predicted by the
theoretical models.

3. Initially one observes very high energy runaway electrons with rela-
tivistic energies (several MeV), which however disappear, when elec-
tron current gets larger than certain critical current [35]. Evidently
the electrons run away before they get large enough energy, when cur-
rent is larger than a critical current. When current gets smaller than
the critical current one observes high energy runaway electrons again.

TGD suggests that runaway electrons might result, when the relativistic
high energy tail of the electron distribution (E < 3 MeV ) created by the
acceleration in the electric potential suffers a partial topological evapora-
tion. This implies that the ionization rate is smaller than predicted by the
theoretical models. The evaporation length for the electrons in plasma is of
the order of magnitude 1/Lf ' neα2/m2

e ' 1/105 meters so that evapora-
tion can indeed take place in the time scales considered. The disappearance
of the high energy runaway electrons above the critical current is explained
by the plasma instability possibly generated by the evaporation of the rela-
tivistic electrons. The confinement time for electrons becomes so short that
very few electrons gain relativistic energies and evaporation ceases.

7.3 Does vapor phase exist? Astrophysical indications

Most of the matter in Universe is in the plasma phase so that the concept
of topological evaporation could have several astrophysical applications. In
following the aim is to demonstrate that one indeed can find explanation for
several astrophysical anomalies in terms of this concept.
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7.3.1 Topological evaporation inside the Sun

The matter inside the stars is neutral plasma and therefore the degree
of evaporation for both photons and relativistic electrons should be high:
nf/n# ' 1. Also the condensation and evaporation lengths are short since
the densities are high. This implies that a considerable part of the energy
liberated in fusion should leave the Sun in vapor phase after having reached
the solar surface. An argument supporting this picture comes from cos-
mology: the rate of energy transfer from the condensate to vapor phase in
matter dominated cosmology is given by

(dE/da)
E

=
1
2a

, (44)

where a denotes M4 proper time. The value of the rate at present is
(dE/da)/E ' 10−11/year, which is of the same order of magnitude as the
rate of energy production in Sun.

7.3.2 Anomalies in the energy distribution of the cosmic rays

It is well known [32] that the energy distribution of the cosmic ray electrons
doesn’t have a sharp cutoff at very high energies as it should. The sharp
cutoff should result from the Compton scattering of the cosmic ray electrons
with the microwave background leading to the loss of energy. The scattering
length is of the order of 1/Lc ' γ#σC ' T 3α2m−2

e ' 1/106 ly. As a
consequence, the observed cosmic ray electrons at high energies should have
a galactic origin unless there exist some mechanism allowing the propagation
through intergalactic space.

TGD indeed suggests mechanisms of this kind. Cosmic ray electrons are
emitted in the vapor phase and, due to the large condensation length in the
Compton scattering, can travel over intergalactic distances if Pf is consid-
erably smaller than one. A second possibility is that microwave photons are
predominantly in the vapor phase so that the scattering in the microwave
background is reduced considerably. Furthermore, electrons would propa-
gate with the velocity of light since the vapor phase corresponds to a mass-
less phase. Of course, the propagation of the higher fermion generations
as massless particles in vapor phase is possible provided there exists some
mechanism leading to their evaporation.

Note that the rates for the topological evaporation and condensation of
the relativistic cosmic ray electrons by Compton scattering with the mi-
cro wave background are expected to have the same order of magnitude so
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that evaporation of the topologically condensed cosmic ray electrons is not
expected to play significant role.

Also the energy distribution of the ultra high energy cosmic ray photons
should have cutoff at energies of the order of 1 PeV caused by the scattering
from microwave background [27]. Again the possibility that some fraction
of the photons is in vapor phase, makes possible the absence of the cutoff.

7.4 Two velocities of light?

As already mentioned, the propagation of the massless particles in the topo-
logical condensate differs from the free propagation and this effect seems
to provide a very simple test for the basic ideas of TGD. Free neutral par-
ticles propagate along the geodesics of the Minkowski space whereas the
condensed particles propagate along the geodesics of 4-surface. In general,
the path along the surface is longer than along Minkowski space geodesic.
Only in case of the geodesic sub-manifolds the time taken to move along
geodesic is the same. This implies that the absolute velocity of propaga-
tion defined using M4 time as time coordinate is smaller in the condensate
than in free space. In particular, for the massless particles, such as photons
and neutrinos one expects the existence of two modes of propagation with
different absolute velocities of light.

The surface in question need not be curved in order to make effect pos-
sible. To see this, consider the most simplest vacuum extremals of type
X4 ⊂ M4 × S1, where S1 denotes geodesic circle in CP2 and assume that
surface is a graph for a map

Φ = Ωm0 , (45)

where Φ denotes the angular coordinate of S1 and m0 denotes the time
coordinate of M4. The induced metric is flat and only its time component
differs from M4 metric

g00 = 1− R2

4
Ω2 . (46)

This implies that the absolute velocity of massless particle moving along
the null geodesic of the surface is reduced from the maximal signal velocity
corresponding to the motion along a null geodesic of M4 and given by
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v =

√
1− R2

4
Ω2 . (47)

Of course, the velocity of light defined using the proper time as time vari-
able is always one irrespectively of its value in terms of M4 time: if stan-
dard clocks indeed measure proper time it is not possible to experimentally
demonstrate the presence of the two light velocities. The only manner to
measure the velocity of light with respect to M4 time involves nontrivial
topology of the space-time since one must compare the propagation velocity
in the condensate with the propagation velocity in M4.

Can one describe the reduction of the light velocity in the matter (de-
scribed in terms of dielectric constant) in terms of this effect? One might
think that the effect of the topological processes describing the absorption
and emission of photons, leading to the generation of the effective velocity of
light lower than the maximal signal velocity, could be described in terms of
the geodesic propagation using the concept of space-time in length scale L.
This is certainly not the case however since all massless particles, in particu-
lar photons and neutrinos would move with identical velocity in presence of
matter. One cannot however exclude the possibility that the average veloc-
ity of light cave = (1−p# +pc#) (where p denotes the fraction of photons in
condensate) making sense, when the condensation and evaporation lengths
of the photon are sufficiently small corresponds to the classical reduction
of the light velocity so that one could estimate the degree of evaporation
directly from the value of the dielectric constant! One must however add
that there is still one complication involved: the many-sheeted nature of
the space-time surface implies that there are actually several propagation
velocities associated with the topological condensate.

In order that two propagation modes for light (or electrons) be observable
the following conditions should be satisfied (see Fig. 7.4.

1. The source of the particles must produce particles of the vapor and con-
densed phase in a reasonable proportion. For instance, in the plasma
phase this condition might be satisfied.

2. The distance between source and observer must be smaller than con-
densation and evaporation lengths. Otherwise photon suffers several
condensations and evaporations during the travel from source to ob-
server. For the light emitted from the Sun this condition is satisfied. In
fact, it might be possible to test the prediction using photons emitted
from satellites.
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Figure 8: Conditions the for direct observability of two propagation modes
of light

3. The velocities of light should differ considerably in the condensate
and vapor phase. The study of the spherically symmetric extremals
leads to conclusion that this could be the case. If the ratio of the
velocities is, say of order two, it should be in principle possible to
test the the prediction by studying the light coming from sufficiently
nearby sources, say Sun and nearby stars.

A possible test for the prediction of two light velocities is obtained by
comparing the propagation velocities of high and low energy photons. At
energies larger than atomic binding energies part of photons is predicted to
evaporate in the neutral matter and photons propagate with average veloc-
ity, which to a good approximation is same as the maximal signal velocity.
At low energies the evaporation rate is considerably smaller and propagation
takes place mostly in the condensed phase.

In fact, there is some experimental indication that the maximal signal
velocity is considerably larger than the generally accepted value for the
velocity of light propagation.

1. The first indication comes from a measurement conducted by A. Obolen-
sky [26]. The measurements in question suggest that electric signals
propagate in two modes and that the velocity of the fast mode is two
times larger than the velocity of light (in condensate). The energy of
the electric signal moving in fast mode is about 1 per cent from that
moving in the usual mode. As already noticed the effect might be
interpreted as an indication that 1 per cent of the relativistic electrons
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moves in the vapor phase. The mechanism of the evaporation in this
case would be electron-electron scattering.

2. The difficulties related to the experimental determination of the Hub-
ble constant might also have something to do with the two modes of
light propagation. The measured values of the Hubble constant seem
to vary by a factor of order two. The explanation based on two propa-
gation modes for light is the following. The lower bound for the value
of the Hubble constant corresponds to the free propagation of light.
This means that the red shift corresponds now to M4

+ metric. The re-
sulting Hubble constant is just Hf = 1/a, where a is Lorentz invariant
time variable and correspond to the minimum value of this param-
eter. The upper bound for the Hubble constant corresponds to the
propagation in the condensate. If Obolensky’s result that the free ab-
solute light velocity is about twice the velocity of the condensed light
is correct then the value for the Hubble constant of the topologically
condensed light should be about twice its value for the freely propa-
gating light: Hcond = 2Hf in accordance with the observations. That
the ratio of the two Hubble’s constant is of this order of magnitude
is implied also by the requirement that gravitational force dominates
over the Kähler force. One must however notice that each space-time
sheet gives rise to its own Hubble constant and the explanation of the
Hubble discrepancy might also involve two different space-time sheets
in the condensate.

7.5 How to interpret the red-shift caused by the warping?

Space-time surfaces have enormous vacuum degeneracy partially character-
ized by vacuum quantum numbers. The simplest space-time sheets have
metric equivalent with Minkowski metric but with the components of the
metric differing by constant shifts from those of M4

+. In particular, for a
solution having a geodesic circle of CP2 as CP2 projection one has Φ = Ωt
and other coordinates constant, and the induced metric has a diagonal form
(g00 = 1 − R2Ω2/4,−1,−1,−1). Distant observer represented by a space-
time sheet having approximately Minkowskian metric (1,−1,−1,−1) would
observe the radiation emanating from this space-time sheet as red-shifted.
There would be also time dilatation. It would however seem that effects are
not gravitational but caused by the mere warping of the space-time sheet.
The red-shift can be quite large without any gravitational field. Of course,
boundary conditions could reduce this red-shift to a gravitational red-shift,
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and the warping could represent in the lowest approximation the influence
of an external slowly varying gravitational field at larger space-time sheet to
the space-time sheet of the particle moving at the larger space-time sheet.
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